SAGE2 Developer Documentation

Table of contents
Introduction
What is an application
Runtime model
State
Getting started
Writing an application
Name of the application
Default Methods
Writing Methods
Events
Application user interface
Minimal application
application types
DOM
Canvas
SVG

WebGL

three.js
User Interface

Widgets
Button
Slider
Text Input
Tutorials
First application
Generating the skeleton

Output




instructions.json
Code




1. Introduction

Target audience is a developer for SAGE2 with knowledge of DOM (web programming) and
Javascript.

1.1. What is an application

an application is a Javascript object
Javascript program files
instructions.json (defined below)
.webp/.png/.jpg image for the logo of the application
All code written for the application must be in Javascript and stored in the
application directory. All server related code will be located in server.js, and
executed by running with node.js
it inherits from the base class SAGE2_App
overrides a list of methods to define its own behavior
init
load
draw
resize
move
event
o quit
e Built-in applications (in SAGE2 core, sage2/public/src)
o image viewer
movie player
pdf viewer
desktop sharing
notes
o streaming application
e Provided applications (folders in sage2/public/uploads/apps)
o each application in a folder
o instructions.json
m settings for this class of application
m default values
main source file
m main Javascript file loaded by SAGEZ2 display clients
an icon file
m any valid ‘web’ image (jpeg, png, webp, ...)
m around 512 pixels, square
m transparency supported
dependencies
m builtins to SAGE2: snap.svg, D3, THREEjs, ..

o O O O O O O O O O O O O

O

O

O



o

o

m provided by the application: extra Javascript libraries inside the
application folder
resources
m images
m 3D models
m data files: JSON, CSV, ...
instructions.json
m In addition to your application files, you should include a Instructions.json

file. This file will act as a configuration file for the application when it is
started in the SAGE2 environment. You should include the following in
this file:
e main-script: javascript file with all of our source code for your
application
icon: image file with your logo to appear as the application icon
width/height: width and height of application when it first opens
dependencies: dependencies javascript files which would
otherwise be added as <script> tags, usually these files are stored
in a directory called “scripts” within the application directory.
title: name of application as shown on SAGE2.
description: your application description
author: name and email address usually

Instruction.json fields

Property

name

main_script

resize

width

height

Type Values Notes

string <path> The path to the file containing the

application definition

string "proportional’, The resize mode of the window

int

int

'free'

The width of the window in pixels

The height of the window in pixels




animation

sticky

dependencie

S

load

icon

title

version

description

author

license

keywords

filetypes

directory

boolean

boolean

[string
]

object

string

string

string

string

string

string

[string

[string
]

string

<path>, <uri>

<path>

unknown

unknown

A list of dependencies of the application

An object passed into the load function at

startup

The file containing an application icon

The current version of the application

A short description of the purpose of your

application

The name of the license of the application

A list of keywords associated with the

application

A list of filetypes that the application can

open

unknown




1.2. Runtime model

~

l/Input Clients /Interaction Clients\

Touch Qverlay SAGE UI

SAGE2 Server

3
Y

1
r

Kinect

SAGE Pointer

N—

—_

Audio Client

/_ Display Clients \

ClientlD =0 ClientiD = 1 ClientlD = 2

Audio Manager

ClientlD =3 ClientlD = 4 ClientiD =5

S 4 N /

Fig. SAGE2 architecture

one application object runs in each display client (browser)
execution driven by the server through RPC calls to each client
o server maintains a state object for each running application
e Server sends ‘create application’ message to each display client
o display client creates an instance from the application class (new)
o call ‘init
e Server sends ‘draw’ calls to display clients for each applications (as needed to achieve
required frame rate)
e Display clients send back message to server before next frame

1.3. State

e synchronized state variable to maintain consistency across displays
e when a display client joins, it receives the state



e state saved in session files
e state is passed when loading a session file and restoring the applications
e state saved automatically on the server

2. Getting started

2.1. Writing an application

While writing a sage2 application refer to the sage2 API wiki found at:
https://bitbucket.org/sage2/sage2/wiki/'SAGE2%20Application%20API

It is useful to read one of the provided applications’ source code to see how a SAGE2
applications are built. You can find all applications source code in:
<sage2_directory>/public/uploads/apps/

A developer can also place his/her application outside the SAGE2 installation folder and in the
Documents/SAGE2_Media/apps folder.

2.1.1. Name of the application

Define your SAGE2 application as a variable. The name of the var should be the same as the
‘title’ component in your instructions.json.

2.1.2. Default Methods

e |nit - initialize your settings on the application. This is where you set up any controls or
buttons/layers that you will access later. This is where your application’s starting screen
should be coded. The state variable (this.state) is already filled.

Draw
Resize - any code about resizing your application goes here.
o To learn more about these application methods, refer to the SAGE2 API.

2.1.3. Writing Methods

Define methods in a similar manner to how the default methods are written, this is done
in javascript and should follow the usual javascript conventions.

2.1.4. Events

These will include events that will be fired when a user interacts with your application. For
example you can cause the application to react to keyboard events - ex. like if the user presses
the space-bar, your application will reload, etc.
Define events at the bottom of your application.js file as the following:

event: function(eventType, position, user_id, data, date) {}
eventType - pointerPress, pointerRelease, pointerScroll, keyboard, etc
data.character - to get the character that was pressed on the keyboard



2.1.5. Application user interface

Widget Menu

The widget menu can be started by opening a pointer, and right-clicking on your application
while it is running in the display screen of SAGE2. This is handled in the applications controls
var (this.controls).

Adding Widget Menu Component
Each item on the widget menu is assigned a sequence number. That number determines where
each item lies on the widget menu. For example, to add an up arrow:
this.controls.addButton({type:"up-arrow",sequenceNo:4
This will add a button for the up-arrow and put the it in the 4th position on the widget menu.
Alternatively, you can set the type like so:
var weatherLabel = { "textual":true, "label":"W", "fill":"rgba(250,250,250,1.0)",
"animation":false};
textual means that you want the label to be text based, and then you just set the label to be
some text and it will populate that control with whatever you put in there, in this case, it would be
‘W7

Any time you want to add another control to the widget menu, make sure the sequence number
that you are putting in is not already taken, if it is, you will have to choose another number or
rearrange the sequence numbers of all the controls to fit yours in.

2.2. Minimal application

e To generate a new application, run the command

o npm run newapp

Running "prompt:genapp" (prompt) task
? Application name: mynewapplication
? Author first name: Luc
? Author last name: Renambot
? Author email: renambot@gmail.com

New application done: mynewapplication in
sage2/public/uploads/apps/mynewapplication
m Done, without errors.
O
2.3. application types
Applications can be of various type. All applications inherit from the class SAGE2_App.



All application are attached to the DOM through a HTML ‘div’ element, referred to as
‘this.div’. It is possible to combine several drawing techniques at once (layers using
several ‘div’ elements).

2.3.1.

2.3.2.

2.3.3.

2.3.4.

2.3.5.

DOM

pure HTML application

create elements using the DOM javascript API (document.createElement,
...)

Example

Canvas

2D pixel drawing

Immediate mode

Can be combined with other drawing techniques

SVG

Scalable graphics is useful for SAGE2 given the size of the displays
Pure SVG is an option

The Snap.svg library is already loaded inside SAGE2 and is available to
the developer

Example

o /[ Make the SVG element fill the app

o this.svg = Snap("100%","100%");

o // Adding it to the DOM

o this.element.appendChild(this.svg.node);

See ‘snap_one’ example
D3
Popular D3.js: Data-Driven Documents

o http://d3js.org/

o Excerpt: “D3.js is a JavaScript library for manipulating documents
based on data. D3 helps you bring data to life using HTML, SVG,
and CSS. D3’s emphasis on web standards gives you the full
capabilities of modern browsers without tying yourself to a
proprietary framework, combining powerful visualization
components and a data-driven approach to DOM manipulation”

Provide scalable graphics
Many examples in SAGE2 folder
o d3 sample, US_ weather, evl photos, ...
Many plotting libraries built on top of D3.js: C3, NVD3, ...
WebGL
To leverage 3D graphics capabilities of the browser
WebGL: i.e. OpenGL ES
Other libraries can be added like ‘lightgl.js’

o https://github.com/evanw/lightgl.js

o A lightweight WebGL library



http://d3js.org/
https://github.com/evanw/lightgl.js

e Example: texture cube
2.3.6. three.js
Scene-graph based 3D (camera, lights, animation, material, shaders, ...)
File loader and conversion utilities
Many plugins and modules available for three.js
built on top of WebGL
Example: threejs_sample, threejs_shader, threejs_loader_ctm, ...
three.js
Scene-graph based 3D (camera, lights, animation, material, shaders, ...)
File loader and conversion utilities

3. User Interface

The following write up describes how an application developer can program application specific
user interface for custom applications. The task of creating a user interface and associating it
with an application is handled by the SAGE2 server. There are two simple steps an application
developer has to follow to get controls for an application and make them work.
1. Specify to the server, the controls that are needed by an app.
2. Have mechanisms in the event handler of the app, to handle events generated by users
of the application in interacting with these controls.

These two steps are further elaborated upon below.

When done creating Ul elements, call the function ‘finishedAddingControls’ to declare the end of
the Ul specification.

3.1. Widgets
If you have started writing a custom application for SAGE2 then you must be aware that all
SAGE2 applications extend SAGE2_applicationobject. Thus, all custom applications come to
posses a “controls” property
which you need to access to specify the user interface elements your application will need.

The different user interface elements that are available are:
e Button
e Slider
e Text Input

3.2. Button
In its simplest form a call to add a button looks like this:



this.controls.addButton({label: "Play", identifier: "PlayButton"});

The object being passed as the argument to the addButton call has two properties: label and
identifier. As the name indicates, specifying a label will create a button with the label text
displayed on the button. The identifier is the name you are giving to this button. This name will
be used to associate action for the button-click event.

Further, you can specify the position of the button around the radial dial of the user interface by
giving a third property to the object being passed:

this.controls.addButton({label: "Play", identifier: "PlayButton", position: 1});

A value of 1 for position puts a button on the left of the ring at 0 degree to the horizontal and
buttons with increasing integer values for position will be placed in clockwise order around the
dial. If position is not specified for a button, next available position is assigned to it.

Instead of a label, you can specify an icon for the button by replacing the label field with a type
field:

this.controls.addButton({type: "next", identifier: "NextButton", position: 7});

In the above example, the type field has been set to “next”. This is one of the predefined values
that the type property can take(the list of values is given at the end of this document). This set of
values is provided for convenience. Alternatively, you can define your own button “type” using
“svg” path descriptors.

var plusButton = {
"state": 9,
"from":"m @ -6 1 @ 12 m6 -6 1 -12 0", //svg paths
"to":"m6 01 -120mM66 10 -12",




"width":12,

"height":12,

"fill":"none",

"strokeWidth": 1,

"delay": 600,

"textual":false,

"animation":true
s
this.controls.addButtonType("plus", plusButton);
this.controls.addButton({type:"plus", identifier:"Plus3", position: 5});

The button type object has several properties that are used to describe the look and feel of the
button. “state” refers to the state of animation. It is set to either 0 or 1 depending on whether you
want the default look of the button to be drawn using the path element “from” or “to”
respectively. When the button is clicked, the look of the button animatedly transitions from one
of these states to the other. If state is set to null, then the look of the button transitions from one
state to the other and back again upon a click.

The figure below shows the “plus” button added to the user interface. You could directly use the
button type object as the value of the type in a call to addButton, like this:

this.controls.addButton({type:plusButton, identifier:"Plus3", position: 5});

This will create the same result, and you don’t have to add the button type before hand.

Two buttons are provided by default, one at the center of the radial dial to hide the user
interface and a second button at the bottom to close the application itself.




3.3. Slider

To add a slider you may call addSlider on the “controls” property as shown below:

this.controls.addSlider({
identifier: "MySlider",
minimum: 5,
maximum: 10,

property: "this.options.brightness"”

1)

The object being passed as argument for the addSlider call in the above example has four
properties namely: identifier, minimum, maximum, and property. As in case of buttons, identifier
is the name that you assign to the slider so as to associate action code with slider events(lock,
move, release). “property” field refers to property of the application that you wish to control
through the slider. The fully qualified(dot separated) name of the property must be specified as
a string against this field. minimum and maximum specify the range of values that the property
will take during the course of execution of this app.

Slider from the above example will move between the values of 5 and 10. If these are all the
fields that are set, then this interval is broken into 100 parts by default. You may override this
behaviour in two ways. You may specify the number of steps your slider should move from
minimum before reaching the maximum, or you may specify the amount by which your slider
should increment each time it moves. The following examples illustrate these two options.

this.controls.addSlider({
identifier: "MySlider",
minimum: 5,
maximum: 10,
property: "this.options.brightness"”,
steps: 10
3




Here the slider will have 10 intervals between 5 and 10 where it can halt. In other words, each
interval will be 0.5.

this.controls.addSlider({
identifier: "MySlider",
minimum: 5,
maximum: 10,
property: "this.options.brightness”,

increment: 0.2

1)

Here the slider will have intervals of 0.2 and 25 such intervals. In case you specify both steps
value and an increment value, the increment value will take precedence.

List of predefined values for button type:
e 'play-pause”

"mute”

"loop”

"play-stop”

"stop”

"next"

"orev"”

"up-arrow”

"down-arrow"

"zoom-in"

"zoom-out”

"rewind”

"fastforward,

"duplicate”

"new

"closeBar”

"closeApp"

"remote”

"shareScreen"

"default”

n



3.4. Text Input

To add a text input to the widget bar, the application may call addTextInput function on the
controls. addTextInput function takes an object with id as a mandatory property and two optional
properties namely defaultText and caption. id is a String to associate action code in the
app.event handler to the "Enter"(or "Return") key event, which marks the end of the input. The
variable defaultText can be set to any string value and the widget will be created by placing this
string in the text area. The variable caption takes a small (length smaller than 6 characters)
string and sets a visible label in front of the text input control using this string.

this.controls.addTextInput({defaultText: "", caption: "Addr", id: "Address"});
this.controls.finishedAddingControls();

//In the event handler with in the custom app code:
event: function(eventType, position, userId, data, date) {
if (eventType === "widgetEvent") {
switch(data.ctrlId){
case "Address":
// Code to be executed when Enter key is hit by the user
break;

// Other controls follow

When done creating Ul elements, call the function ‘finishedAddingControls’ to declare the end of
the Ul specification.

4. Tutorials
4.1. First application

Generating the skeleton

% npm run newapp

> SAGE2@0.3.0 newapp /Users/luc/Dev/GIT/bitbucket/sage2
> grunt newapp

Running "prompt:genapp" (prompt) task
? Application name: tutorial

? Author first name: Tino

? Author last name: Pizza

? Author email: tino@pizza.com

Running "genapp" task
New application done: tutorial in
/Users/luc/Dev/GIT/bitbucket/sage2/public/uploads/apps/tutorial




Done, without errors.

Output
instructions.json
{
"main_script": "tutorial.js",
"icon": "tutorial.png",
"width": 800,
"height": 600,
"resize": "free",
"dependencies": [
1,
"load": {
"value": 4
¥
"title": "tutorial",
"version": "1.0.0",
"description"”: "SAGE2 application tutorial",
"keywords": [ "sage2", "tutorial" ],
"author": "Tino Pizza <tino@pizza.com>",
"license": "SAGE2-Software-License"
}
Code
!/

// SAGE2 application: tutorial

// by: Tino Pizza <tino@pizza.com>
//

// Copyright (c) 2015

//

var tutorial = SAGE2_App.extend( {
init: function(data) {
// Create div into the DOM
this.SAGE2Init("div", data);
// Set the background to black
this.element.style.backgroundColor = 'black';

// move and resize callbacks
this.resizeEvents = "continuous";
this.moveEvents = "continuous";

// SAGE2 Application Settings

//

// Control the frame rate for an animation application
this.maxFPS = 2.0;

// Not adding controls but making the default buttons available
this.controls.finishedAddingControls();

this.enableControls = true;

console.log('tutorial> Load with state value', this.state.value);

¥




1)

draw: function(date) {
console.log('tutorial> Draw with state value', this.state.value);

¥

resize: function(date) {
this.refresh(date);

Ts

move: function(date) {
this.refresh(date);

¥

quit: function() {
// Make sure to delete stuff (timers, ...)

s
event: function(eventType, position, user_id, data, date) {
if (eventType === "pointerPress" && (data.button === "left")) {
¥
else if (eventType === "pointerMove" && this.dragging) {
else if (eventType === "pointerRelease" && (data.button === "left")) {
¥
// Scroll events for zoom
else if (eventType === "pointerScroll") {
else if (eventType === "widgetEvent"){
}
else if (eventType === "keyboard") {
if (data.character === "m") {
this.refresh(date);
}
}
else if (eventType === "specialKey") {
if (data.code === 37 && data.state === "down") { // left
this.refresh(date);
}
else if (data.code === 38 && data.state === "down") { // up
this.refresh(date);
}
else if (data.code === 39 && data.state === "down") { // right
this.refresh(date);
¥
else if (data.code === 40 && data.state === "down") { // down
this.refresh(date);
¥
}
}




