

New Features in SAGE2 v3

November 2017

SAGE2Cloud 3
Introduction 3
Prerequisites 3
Installation 4
Edit configuration file 4
Setup the SSL certificate 5

If you don't have a certificate, then you can generate a self-signed one (Linux only
instructions): 5

pm2 cheat-sheet 5
Youtube video 6
Credits 6

SAGE2 Unity3D Applications 7
Introduction 7
Unity Build Configuration 7
Preparing to install on SAGE2 8

Interaction 9
SAGEPointer 9
Interacting Directly on Display Client 10

Jupyterlab Integration 11
Extension 11

Disclaimer: A SAGE2 server must be running version 2.0.327 or newer to use this
JupyterLab functionality. 11

Package Installation 13
Prerequisites 13
Installation 13
Development 13

Docker Installation 14
To install/update 14
To run 14
Future Plans 14
Issues and Contributing 14

Youtube video 14

Performance monitoring for SAGE2 15
Performance page 15
Metrics and Graphs 15

Voice Commands 19
Common Commands 19
Wall Commands 20
Application Commands 21
UI client Commands 22
Youtube video 22

Applications Updates 23
Movie Sync Remote Control 23
ChemViewer Updates 23
Notepad Update 24

Application Data Sharing 24
Youtube Video 24

Remote Pointers 25
Youtube Video 25

User Model 26

SAGE2Cloud
SAGE2Cloud is a server for creating SAGE2 docker containers. It simplifies SAGE2
deployment:

● One click SAGE2 server installation and configuration
● Monthly SAGE2 version selector
● One-click updater
● Support for multiple users and machines

It provides a scalable environment for deploying and managing multiple SAGE2 servers.

Introduction
SAGE2Cloud is a management system for SAGE2 servers. With SAGE2Cloud you can:

● Create, deploy and configure SAGE2 local and remote servers
● Edit and customize the configuration
● Start/Stop the SAGE2 servers

Prerequisites
● docker
● Mongodb
● Install pm2 to manage the Node.js instance:

#!bash
npm install pm2@latest -g

Installation
Add the user that will be running docker into the docker group:

#!bash
sudo vi /etc/group

Run ‘docker ps’ to make sure you can connect to docker.

Make sure docker daemon is running: on a machine with systemctl, use:

systemctl status docker

Clone the repository:
#!bash
git clone https://bitbucket.org/sage2/sage2cloud
cd sage2cloud
mkdir certs
npm run in

For SAGE2Cloud development instances, you can disable mongodb authentication by editing
'/etc/mongodb.conf' and commenting out the lines starting with 'security' and 'authorization'. If
you have set up mongodb with authentication, then make sure you provide the right credentials
in config.js (see below).
Make sure that 'mongodb' is running: on a machine with systemctl, use:

systemctl status mongodb

Edit configuration file
#!bash
cp config.js.example config.js
vi config.js

● hostname: The domain where sage2cloud is running. For example,
www.sage2cloud.com. Make sure you have the DNS set up correctly.

● http: The http port that sage2cloud will be running.
● https: The https port that sage2cloud will be running.
● mongoHost: URL where mongodb is running. If your mongodb is running on the same

machine as sage2cloud, leave it as localhost. If you are not sure, leave it as is.
● mongoPort: Port where mongodb is running. Default is 27017. If you are unsure, leave it

as is.
● mongoName: Name of the db in mongodb. For most instances, sage2Cloud should

work.

● mongoUser: If mongodb authentication is enabled, here you have to enter the
username. If not, leave it as is.

● mongoPass: If mongodb authentication is enabled, here you have to enter the password.
If not, leave it as is.

● useMongoAuthentication: true if authentication is enabled (don't forget to set username
and password above), false for no authentication.

● certs: Ca, cert and key certificates. These files should be in the certs directory. See
below for instructions on creating certificates if you don't have any.

Setup the SSL certificate
Copy certs in the certs directory. NOTE: Certificates need to follow the following naming
convention:

#!bash
_.<domain>-ca.crt
_.<domain>.crt
_.<domain>.key

If you don't have a certificate, then you can generate a self-signed one (Linux
only instructions):

#!bash
wget
https://bitbucket.org/sage2/sage2/raw/8f4b44f1e24068a24cba8f4462838bf6adbfdf39/key
s/init_webserver.sh
chmod 755 init_webserver.sh
./init_webserver.sh <ip or hostname>

For example, if you are setting up sage2cloud for google.com, then your keys should be named
as follows:

#!bash
_.google.com-ca.crt
_.google.com.crt
_.google.com.key

pm2 cheat-sheet
Start app

#!bash
pm2 start app.js

Stop app

#!bash
pm2 stop app.js

Add it to the startup
#!bash
sudo pm2 startup systemd

Run as sage user
#!bash
sudo pm2 startup -u sage

Reload pm2 (start/stop the pm2 daemon with all the apps that's controlling)
#!bash
sudo pm2 update

Youtube video
https://youtu.be/q6AdaeoFDm8

Credits
Account management backbone forked from Node-Login created by Stephen Braitsch.

https://youtu.be/q6AdaeoFDm8
https://github.com/braitsch/node-login

SAGE2 Unity3D Applications

Introduction
Unity WebGL applications can be displayed in SAGE2 similar to how native SAGE2 applications
- by dragging and dropping a zipped application folder on the SAGE2 web UI. As Unity
applications are displayed as locally hosted WebViews, the display client must be using
Electron. WebGL builds from Unity 5.4.2 up to Unity 2017.1.1 have been tested.

Unity applications will be listed under the Media Browser along with the other SAGE2
applications.

This an example SAGE2 Unity app is available on the SAGE2 App Repository
(http://apps.sagecommons.org) as 'Unity Interaction Test' under 'Examples for Developers'

The Unity project source code is also available at: https://bitbucket.org/sage2/sage2_unity

Unity Build Configuration
Before a Unity WebGL application is built for use in SAGE2, under Build Settings/Player
Settings/Settings for WebGL/Resolution and Presentation, set the WebGL Template to

'Minimal.' This will format the application so it can be displayed as a full screen, window-scalable
application.

Preparing to install on SAGE2
Native SAGE2 applications require an instructions.json file which specifies the size of the
window, custom icons, description, author, and more. For Unity applications, to have an
instructions.json file is recommended, but not required. If SAGE2 detects a Unity WebGL
application without an instructions.json, it will be auto generated.

Example instructions.json

Once the Unity WebGL build is generated zip the folder so that the zip is in the following
structure

● [Application folder (Same name as zip file)]
○ Build folder

■ [Unity data files]
■ UnityLoader.js

○ index.html

Interaction
Some keys such as Escape, Middle Mouse Button, and Shift-QuestionMark are used by SAGE2
and may conflict with interaction.

SAGEPointer

Interacting Directly on Display Client

● All letter keys are sent to Unity applications as uppercase to allow InputManager
Vertical/Horizontal axis to function though the SAGEPointer

Jupyterlab Integration
A JupyterLab extension to integrate SAGE2 into the JupyterLab scientific workflow.

Three researchers using JupyterLab and SAGE2 together with the jupyterlab_sage2 extension.

Extension
The goal of this extension is to use SAGE2 with JupyterLab to integrate existing data science
workflows into the collaborative software.

Disclaimer: A SAGE2 server must be running version 2.0.327 or newer to use
this JupyterLab functionality.

This extension to JupyterLab allows a user to simultaneously connect to multiple SAGE2
servers and share JupyterLab content with SAGE2, including:

● Notebooks
● Notebook Cells (Images)

From the JupyterLab launcher, open the SAGE2 widget under "Other." Once the SAGE2 Widget
is opened, a server connection can be created by clicking the green '+' button and entering the
server Address. A Server Name can be specified in order to more easily refer to a server later.

http://sage2.sagecommons.org/
https://github.com/jupyterlab

The plugin displays current server connections -- these connections are persistent whether or
not the widget is open. The gold star indicates a 'favorite' SAGE2 server, or a server which you
will be using more frequently.

When a Notebook is open, the Notebook or a selected cell output may be sent to SAGE2
through the main menu. Sending a Cell/Notebook to 'Favorite' sends the content to the

Favorited server, while sending content to '...' opens a dialog in which a user may choose one of
the SAGE2 connections to send to.

Notebooks are sent to SAGE2 and rendered using nbviewer. Notebook cells are rendered as
images and automatically updated when a cell is re-run.

Package Installation

Prerequisites
● JupyterLab

Installation
jupyter labextension install jupyterlab_sage2

Development
For a development install (requires npm version 4 or later), do the following in the repository
directory:

npm install
jupyter labextension link .

To rebuild the package and the JupyterLab app:
npm run build
jupyter lab build

http://nbviewer.jupyter.org/

Docker Installation
To try JupyterLab with SAGE2, use the sage2/jupyterlab-datascience-notebook Docker image.
This image is built FROM the jupyter/datascience-notebook and includes Python 3, R, and Julia
as well as a variety of data science packages.

To install/update
docker pull sage2/jupyterlab-datascience-notebook

To run
docker run -it --rm -p 8888:8888 sage2/jupyterlab-datascience-notebook start.sh jupyter
lab

The -p 8888:8888 maps the external port to the docker port: -p external:internal. If you would
like to select a different port to access Jupyterlab use -p yourport:8888.

When starting the docker image, the console will give a JupyterLab url with an access token.

To access JupyterLab, navigate your webpage to

http://yourhostname:yourport/?token=yourtoken.

For more information on the jupyter/datascience-notebook Docker image, visit:

https://github.com/jupyter/docker-stacks/tree/master/datascience-notebook

Future Plans
In the future, we plan to support more content types and methods of sending data from
JupyterLab to SAGE2, as well as implement a file browser for JupyterLab which allows access
to SAGE2 files in the JupyterLab workspace.

Issues and Contributing
● Please direct any issues or bug reports to the repository's Issues

○ https://github.com/AndrewTBurks/jupyterlab_sage2/issues
● If you would like to contribute, submit a Pull Request

○ https://github.com/AndrewTBurks/jupyterlab_sage2/pulls

Youtube video
https://youtu.be/l2pRLhw6GSE

https://github.com/AndrewTBurks/jupyterlab_sage2/issues
https://github.com/AndrewTBurks/jupyterlab_sage2/issues
https://github.com/AndrewTBurks/jupyterlab_sage2/pulls
https://github.com/AndrewTBurks/jupyterlab_sage2/pulls
https://youtu.be/l2pRLhw6GSE

Performance monitoring for SAGE2
The new performance monitoring utility provides a comprehensive view of the health of SAGE2
system enabling the users to narrow down the cause of potential issues like slow responses to
interactions or a video becoming “choppy”.

Performance page
The performance monitoring page is listed as “Performance” under the “Advanced” menu at the
right top corner of the SAGE2 UI page as shown in Fig1

.
Fig1: Accessing Performance page through SAGE2 UI

Metrics and Graphs
The page has two sections, one for the server and one for the clients. Fig2 gives an overview of
what the page looks like. On the server side of things, the hardware details of the machine on
which the SAGE2 server is running is first listed out. After that, three different metrics namely
Load, Memory, and Network traffic for both the SAGE2 server and the overall host machine are

visualized as charts. These charts show the trends of each of the metrics for the past 5 minutes,
along with giving out their current values. Fig3, Fig4, and Fig5 each shows these charts.

Fig2: Performance monitoring page

Fig3: Load of SAGE2 server and overall system load

Fig4: Memory usage of SAGE2 server and overall system memory usage

Fig5: Network traffic of SAGE2 server and overall system network traffic

Under the client section, the hardware details of all the display clients that are connected are
given in a list. Then a small-multiples view of the display clients is provided, where each
small-multiple shows the current values of load and memory for the corresponding display client
as a horizontal histogram. Moreover, these small-multiples are interactive. Users can select one
or more of these small multiples as shown in Fig. 6 to bring up metric charts similar to server
metric charts. These charts show multiple lines, where each line corresponds to one of the
selected display clients. The small-multiple of a selected display client is highlighted with a
colored border and the same color is used to display the corresponding line in the charts.

Fig6: Multiple display clients selected to show their metric charts

Voice Commands

Common Commands

Wall Commands

Action Invocation Words Required

Tile all open applications

Clean wall
Clean this up
Cleanup
Organize
Tile content
Tile everything
Tile wall
Tile windows

Close all open applications

Clear everything
Close everything
Get rid everything
Toss everything
Toss it all

Restore closed applications

Restore view
Restore everything
Bring back everything

This will restore applications closed by the previous
command.

Launch an application
Open file from media browser

Launch [phrase]
Load application [phrase]
Open [phrase]
Start [phrase]

Based on the [phrase], the application with the most
matches within the tile, description, or keywords (described
in instructions.json) will be launched.

If any phrase contains the word: pdf, image,
picture, video, or movie. Instead of an application, it
will search for a name match within the corresponding
folder of the media browser.

Make a note

Make a note [phrase]
Make a reminder [phrase]
Write down [phrase]

Creates a note with the [phrase] as the contents.

 Save applications as [phrase]

Save session with a name

Save content as [phrase]
Save session as [phrase]
Save state as [phrase]
Save wall as [phrase]
Save applications name [phrase]
Save content name [phrase]
Save session name [phrase]
Save state name [phrase]
Save wall name [phrase]

Creates a saved session with [phrase] as the name
visible within the media browser.

Restore all applications that were part
of a saved session

Restore session [phrase]
Load session [phrase]
Bring back [phrase]

Restores a session with the most word matches within the
given [phrase].

Open a Webviewer application and
search using Google

Web search [phrase]
Google search [phrase]

Will first open a new Webview application, then perform a
Google search with the given [phrase]. If “image” is said
after web or google, image search will be done instead of
text search
Ex: Google image search [phrase].

Share an application
to a remote site

Share with [phrase]
Send to [phrase]

Will share the application directly under the pointer to the
remote site who’s name has the most word matches within
[phrase].

For wall commands, each of the words of an invocation must be present. For commands with
phrases, the phrase must follow the preceding word, otherwise the phrase will be incorrectly
detected. Aside from the phrase and the word before it, the invocation words can be in any
order.

Application Commands

Applications can be issues commands from their context menu. The menu entry
activated will be the one with the most word matches. When multiple applications are

open, the application directly under the pointer will be checked first. If no matches are
found, the rest of the applications will be checked starting from the oldest.

For entries that take user input, the word before the input area is used to identify the
start of input. Anything after that word will be sent as input.

UI client Commands
The following commands can be activated from within the client UI. They do not reach
the server for evaluation.

Action Invocation Words Required

Tell the time What time is it

Tell the data What is today’s date

Open the help page Help

Will open in a new tab the quick reference for voice
commands. This may be prevented by pop-up blockers.

Youtube video
https://youtu.be/9atA_h_t5pM

https://youtu.be/9atA_h_t5pM

Applications Updates

Movie Sync Remote Control
● This applications is able to control multiple video players at once.
● Detects when over a video player and can add that player under its controls from the

context menu or within the application.
● The longest connected player becomes master, which the other player will synchronize

with.

ChemViewer Updates
● Expanded to show information from http://www.ebi.ac.uk/chebi/
● Updated by Jared McLean, at University of Hawaii Hilo

http://www.ebi.ac.uk/chebi/

Notepad Update

●
● Now supports text scrolling
● Updated by Jirayu Roungsuriyaviboon of Mahidol University, Thailand

Application Data Sharing
● Data sharing was added to SAGE2 application API to allow multiple applications to work

as one large application
○ Also enable applications to be designed like components that other developers

can utilize
○ Applications are able to launch other applications
○ This allows not only data passing, but window manipulation

● Applications that launch others, are able given each others’ ID

○ The IDs are pass in variables to identify the parent (launcher) and child (launched
application)

● Applications can create named variables on the server
○ Those variables can be requested or subscribed to
○ Any application can create, request, subscribe, or modify variable

Youtube Video
https://youtu.be/uU5HZtmvS10

https://youtu.be/uU5HZtmvS10

Remote Pointers
● Improves collaboration and identifying features in an application

○ Applications shared with a remote site shows pointers over an application from
participants of both sites

○ Pointers of the remote site are suffixed with “@hostname”
● Utilizes application synchronization
● Pointers are associated with the application

○ Relative position is preserved even if scale is mismatched between sites
○ Can move the application on your site and relative position will still be preserved
○ Application must be visible to see remote pointer
○ Hides pointer when in window management mode

Youtube Video
https://youtu.be/6E7pdyuhwhA

https://youtu.be/6E7pdyuhwhA

User Model
● Distinguish between people using SAGE2

○ Access and authorization
○ Log activity—who did what
○ Scenarios and roles, e.g.

■ Group meeting with a leader
■ Teachers / students
■ …etc.

● Next Features

○ Secure authentication
■ Currently using username/email as login keys
■ Integrate Passport/Express

○ Authorized access to user console
○ Extended role creation

■ Currently limited to admin/user/guest

