

Installation guide, V5

March 2020

Introduction
Prerequisites

Quick Start Guide for Windows
Get SAGE2
Installation
Remark
Putting SAGE2 into Production Use
Advanced configuration

Installation from sources
Configuration
Run
Supported File Types
Install for Windows 64-bit (7, 8.1, 10)

Download
Install FFMPEG
Install EXIFTOOL
Set Environment
Clone SAGE2
Generate HTTPS keys
Install Node.js Modules

Install for Mac OS X (10.7 - 10.11)
Download
Install Dependencies

1

Clone SAGE2
Generate HTTPS Keys
Install Node.js Modules
ERRORS

Install using fresh Linux installation
Install Instructions for Docker (Windows, Mac OSX and Linux)

Install Docker
Test Docker
Install SAGE2

Security
Introduction
Server Configuration
Web Certificates

Self-signed Certificates
Signed Certificates
Let’s Encrypt

Audits
UCSD Campus network
Air France – KLM / Group Technology Office
NASA's Goddard Space Flight Center

2

Introduction
This document describes first the installation and setup of SAGE2 for Windows (Windows 8,
8.1, and 10, all for 64-bit). Windows 10 is preferred (most tested). It should work similarly for
Home, Pro, and Enterprise editions of Windows. The installation focuses on a single machine
setup, which is highly recommended for a first setup.

Suggested configuration:

● Windows machine / PC ​connected to a single large monitor, TVs or projectors. This will
become your main SAGE2 server.

○ It will run a Launcher service to setup and manage SAGE2’s configuration,
○ It runs the SAGE2 server, and the SAGE2 display clients that fill up your

displays.
● Laptop connected via a network switch or router to your Windows machine. This

serves as the actual end-user’s interface to your SAGE2 wall.
○ It will enable you to connect to the Launcher and the SAGE2 server
○ It will run one SAGE2 client interface to enable you to interact with content on the

SAGE2 wall.

3

Prerequisites
● Google Chrome 64-bit ​needs to be installed

○ See: ​https://www.google.com/chrome/browser/desktop/
○ Make sure to select the 64-bit version (you might have to select ‘Download

Chrome for another platform’).
● Knowing the ​IP address (xxx.xxx.xxx.xxx) or hostname (myserver.test.com) ​of your

SAGE2 machine
○ to find how the IP address, either:

■ open a command terminal by running ‘cmd’
■ run: ​ipconfig /all
■ find your IPv4 address and write it down. You will need it later.

■
○ or

■ Open Network Connections by clicking the Start button Picture of the
Start button, and then clicking Control Panel. In the search box, type
adapter, and then, under Network and Sharing Center, click View network
connections.

■ Select an active network connection, and then, in the toolbar, click View
status of this connection. (You might need to click the chevron icon to find
this command.)

■ Click Details.
■ Your computer's IP address appears in the Value column, next to IPv4

Address:

4

https://www.google.com/chrome/browser/desktop/

■

5

Quick Start Guide for Windows

Get SAGE2

Navigate to the SAGE2 website: ​sage2.sagecommons.org. ​The latest binaries are available by
clicking Get SAGE2.

6

Installation
Select and download the Windows binary. It comes as a self-extracting archive file,​ it contains all the
files needed to run SAGE2.

7

Windows might not recognize the downloaded file or its origin. Click ‘Run anyway’.

8

Select a destination folder to extract SAGE. For instance the desktop. SAGE will extract into a
sub-folder named something like:SAGE2-45.0.xxx.

You can install SAGE2 in any folder, but avoid paths or folders with a special character (space, slash,
…).

9

Once uncompressed, you can discard the .exe file.

10

The execution of SAGE2 is controlled by a ‘launcher’ (called ​sabi.js​). To start the launcher,
double-click ​‘Launcher.bat’.​ The launcher is itself a web server.

As part of the launch process it will open the Chrome browser.

11

If a firewall is running, a popup might appear to ask you to allow ‘node.exe’ (javascript runtime) to
access the network. ​Click ​‘Allow access’. ​Check both Private and Public options.

12

The launcher is now running at the following URL: ​http://localhost:10000​. A Chrome window is opened
automatically to the launcher.

The basic functions are accessible at ​http://localhost:10000/#SAGE2

The launcher is protected by a password.
Default values are, ​name: ​sage2​ and password: ​sage2​.
The password can be changed in the ​Admin​ page (later).

13

http://localhost:10000/
http://localhost:1000/#SAGE2

The basic functions are accessible at ​http://localhost:10000/#SAGE2​ : Start a SAGE2 session, stop a
SAGE2 sessions, and set a meeting access ID (password for end-users to access the SAGE2
session). ​For now just click Start.

14

http://localhost:10000/#SAGE2

The admin page (​http://localhost:10000/#Admin​) is accessible by pressing the button at the bottom of
the page. One can edit the SAGE2 wall configuration using either an assisted web form, basic web
form, or a JSON file editor.

● Assisted - The assisted form is recommended for new users, as it will attempt to detect
system settings and recommend values based on what it found. There are also buttons
to easily add alternative hosts and remote sites.

● Basic - The basic form includes the most commonly entered fields
● Expert - The JSON file editor is recommended for those are are familiar with the process and

JSON structure. This provides an interface to write the JSON file containing the configuration
settings the server will use. The file must be syntactically correct in order for the server to
work.

To change the launcher password, enter your new password in the text box (in the form
sage2:sabi:newpassword​) and click ‘Reset launcher password’. The password will be activated at the
next start of the launcher.

15

http://localhost:10000/#Admin

The SAGE2 wall assisted configuration form lets the user quickly edit existing values (hostname, port,
resolution, …). Clicking ‘Save’, ‘Save and Make Certificates’ or ‘Cancel’ will return to the previous
page.

When running SAGE2 for the first time, click ‘Save and Make Certificates’. ​The SAGE2 server
needs SSL certificates in order to allow client connections.

If you happen to already have signed certificates, you should use the ‘Save’ option instead because
the ‘Save and Make Certificates’ will overwrite any existing certificate that matches the Host or any of
the Alternate Hosts entries.

Note: The ‘Make Certificates’ option only generates self-signed certificates for testing purposes. Valid
certificates must be requested from your IT manager.

16

Configuration Page
● Hostname / IP to display​: SAGE2 shows this value in the top left corner of the display. This

will be visible for all using the SAGE2 wall. If you do not have a static IP, you may need to
frequently update this value.
To start we recommend: localhost

● Alternate Hostnames / IPs​: Add all hostnames and IP's from which users should be able to
access the SAGE2 wall in addition to the displayed value. Even if the machine is associated
with other IP addresses, only the values listed will be allowed for users to connect in on.
To start we recommend: 127.0.0.1

● Port number​: By default this is 9292. But will require everyone who connects to your wall to
add :9292 to the address in order to access. To use standard http port, use 80. This will
remove the need to specify the port number. Depending on your admin level, you might not be
able to use 80.
To start we recommend: 80

● Secure Port Number​: By default 9090. By using 443, users connecting to the SAGE2 wall will
not need to specify the secure port. Depending on your admin level, you might not be able to
use 443.
To start we recommend: 443

● Resolution of display​: This value must be in pixels. Do not include a suffix or units marker.
Layout: Number of panels in the display configuration. * Note: If you intend to use the web
controller, the entered resolution value should be the entire width and height of all panels and
for the panel layout it should be 1x1. The reason is that the web controller will launch one
firefox window large enough to span the entire display.
To start we recommend: 1x1

● Remote Sites​: Enter in sites that you wish to see the status and share files with. Label: The
name to display on the display. Hostname / IP address: Valid hostname / ip which the remote
site can be accessed. Secure Port Number: The port number that the remote site uses.
To start we recommend: sage2server.evl.uic.edu

● Dependency location on the computer​: Where the installations for ImageMagick and
FFMpeg are installed. If you are using the SAGE2 binary zip, then this should always be bin\

● Background​: A background color can be entered as a CSS hex value. If an image is desired
to be shown, the path from the public directory of SAGE2 can be used. The path must be
within the public directory otherwise the file cannot be served. The Option to use an SVG is
also available, this too must use a public directory path reference otherwise it cannot be
served.
To start we recommend: ignore this for now.

● Meeting ID​: When users connect to the SAGE2 wall they will be prompted for the meeting ID
before being able to see content. This applies to the UI, display, and audio manager. Web
Controller Password: Necessary if you want to use the web controller to remotely start, stop
and reset the meeting ID. Configuration Page Password: Necessary to access the

17

configuration page again.
To start we recommend: leave empty

For more configuration variables, see:

https://bitbucket.org/sage2/sage2/wiki/Configuration

More complex edits can be done in the ‘expert’ mode. ​We do not recommend this for first time
installers.
This a fully functional JSON editor with syntax highlighting and syntax validation (see symbols in the
left margin). Click ‘Cancel’ or ‘Save’ to cancel or validate your entries and return to the launch page.

18

https://bitbucket.org/sage2/sage2/wiki/Configuration

Once the configuration is finalized, start SAGE2 by pressing the ​‘Start’​ button.

FYI: Behind the scenes, a SAGE2 server will launch (inside an automatically minimized window) and
two clients are started inside two Electron windows: an audio manager and a display client (starts
fullscreen).

Remark
If this is the first time the computer is launching SAGE2, a folder called SAGE2_Media will be created
within your Documents folder (for the current user).

19

Here’s the default client, occupying the screen. The URL of the SAGE2 is shown on the top left menu
bar. If a lock symbol is present, it means the SAGE2 session is protected by a password (i.e. meeting
ID).

20

Once SAGE2 is running, access an interface client from your laptop using the IP address or hostname
of your SAGE2 server. For example: ​http://frodo.hawaii.edu:9292

Once your laptop is able to connect successfully you are ready to try out SAGE2. For tips on how to
use SAGE2’s various features look at the Quick Tips Guide at:
 ​https://youtu.be/Dn-k7wAhY-I

21

http://frodo.hawaii.edu:9292/
https://youtu.be/Dn-k7wAhY-I

FYI: Once the launcher is started the first time, it creates a script to start automatically after each login
to your computer, of the current user (after reboot or logoff). You can check the script by opening the
‘Run’ command.

22

To access the startup item folder for your current version of Windows, type ‘shell:startup’ in the ‘Open’
textbox of the ‘Run’ tool.

23

FYI: The file explorer will open a window showing your startup items. You can check or edit the script:
startWebCon.bat​. This will make sure that the launcher is always started after a reboot, crash or
update.

24

FYI: You can access the launcher remotely at the port 10000 on the SAGE2 machine. The default
name is ​sage2​ and the default password is also ​sage2​. You can change the launcher password in the
admin​ page. The password must be specified in the form: ​sage2:sabi:newpassword.

This is where knowing the IP address of your SAGE2 machine is important. While working on the
SAGE2 machine itself, the launcher is accessible at ​http://localhost:10000​. However, from your laptop,
you need to use the full IP address or hostname of the machine: ​http://myserver.com:10000​.

25

http://localhost:10000/
http://myserver.com:10000/

Admin page of the launcher for SAGE2. Enter your new password (​sage2:sabi:newpassword​) and
click ‘Reset launcher password).

26

Setting up SAGE2 for laptop connections on the same network without a hostname:
- Open the config file for editing
- Change ​“host”​ field to be the IP address of the machine
- Navigate to ​keys​ folder inside the SAGE2 install directory
- Edit the GO script file for your machine (Windows machines: ​GO-windows​)
- Add the following line to the file: ​call init_webserver.bat <ipaddress>
- Save and run the script to generate certificate and key files
- The SAGE2 client UI should now be accessible by using either of the following methods:

- If ​port = 9090​, ​index_port = 9292​,​ ​and ​host = “123.456.789.10”​ in your config file:
- https://123.456.789.10:9090
- http://123.456.789.10:9292/index.html​ (MUST INCLUDE “index.html”)

27

Putting SAGE2 into Production Use
Previously you installed SAGE2 to get this up and running quickly. To put SAGE2 into proper
production use you need the following:

● A static IP address and hostname.
● SSL certificates for your IP address.

To obtain the static IP and SSL certificate you should contact your system administrator or
Internet Service Provider. For more information on SSL certificates see the Security section in
this manual.

Once you have your static IP, install it as you did in instruction X by entering into the Y box.

Install the SSL certificate by reviewing the Security section of this manual.

Now kill and restart blah blah blah

Advanced configuration
For more complex Windows installations, you might need extra tools:

● Firefox - ​https://www.mozilla.org/en-US/firefox/new/
○ more flexible than Chrome to setup across multiple monitors

● AutoHotkey - ​http://ahkscript.org/
○ Windows macro and automation tool

● Notepad++ - ​https://notepad-plus-plus.org/
○ or any text editor

The launcher is configured by a JSON file: ​sabi.js/config/sage2.json. ​It defines mainly two
operations: starting and stopping SAGE2. For a more complex display system, you must provide
two ​.bat ​files which will perform these operations. We provide a script for a single-node
single-display configuration. More complex setup can be supported using ​AuthoKey​ and ​Firefox​.

Now, SAGE2 uses Electron as a display client (​https://electron.atom.io​) by default. You can still
use Chrome if you prefer.

For instance:

Starting SAGE2: see ​sabi.js/scripts/sage2_on_electron.bat

● starts SAGE2 with the server script
● launches Electron with a audio manager

○ http://hostname:port/audioManager.html

28

https://www.mozilla.org/en-US/firefox/new/
https://www.mozilla.org/en-US/firefox/new/
http://ahkscript.org/
https://notepad-plus-plus.org/
https://electron.atom.io/

● launches Chrome with a display client 0
○ http://hostname:port/display.html?clientID=0

Stopping SAGE2: see ​sabi.js/scripts/sage2_off.bat

● kills the SAGE2 server (using taskkil)
● closes the audio manager
● closes the display client 0

29

Installation from sources
Instructions to install SAGE2 for MacOS, Windows and Linux directly from sources.

● Note: When using multiple computers to run displays, the install instructions need only
be performed on one which will host the server. All others need only connect through a
browser and access their respective ID based on tile position.

Configuration

● Create a ​configuration file​ for your display environment

● Save file in /config folder

● Select your configuration file

○ Option 1: name your configuration file '-cfg.json'
■ (eg. host = thor.evl.uic.edu, config file is 'thor-cfg.json')

○ Option 2: create a file 'config.txt' in
■ Specify the path to your configuration file in 'config.txt'

Run

● Open Terminal / Cmd

○ cd <SAGE2_directory>
○ node server.js​ (options: -l log, ​-i​ interactive prompt, ​-f <file>​ specify a configuration

file)
● Open Web Browser

○ Google Chrome
■ First time use - install ​SAGE2 Chrome Extension

○ Firefox
■ First time use - go to ​about:config​ and set

media.getusermedia.screensharing.enabled​ to true and add domain(s) for
SAGE2 server(s) to ​media.getusermedia.screensharing.allowed_domains

○ Electron
■ Open a terminal window and navigate to the SAGE2_directory.
■ cd <SAGE2_directory>

■ ./node_modules/.bin/electron electron.js -s http://hostname:port -d 0

● The above command will open one browser pointed at display 0,
which is ​display.html?clientID=0

■ There are additional flags available:
● -h, --help output usage information
● -V, --version output the version number

30

https://bitbucket.org/sage2/sage2/wiki/Configuration
https://chrome.google.com/webstore/detail/sage2-screen-capture/mbkfcmpjbkmmdcfocaclghbobhnjfpkk

● -d, --display <n> Display client ID number (int)
● -s, --server <s> Server URL (string)
● -f, --fullscreen Fullscreen (boolean)
● -n, --no_decoration Remove window decoration (boolean)
● -x, --xorigin <n> Window position x (int)
● -y, --yorigin <n> Window position y (int)
● --width <n> Window width (int)
● --height <n> Window height (int)
● --password <s> Server password (string)
● --hash <s> Server password hash (string)
● --cache Clear the cache
● --console Open the devtools console

○ SAGE2 pages
■ Display Client: ​https://<host>:<port>/display.html?clientID=<ID>
■ Audio Client: ​https://<host>:<port>/audioManager.html
■ SAGE UI: ​https://<host>:<port>
■ SAGE Pointer: ​https://<host>:<port>/sagePointer.html​ (Allow pop-ups)

Supported File Types

● Images

○ JPEG, PNG, TIFF, BMP, PSD
● Videos

○ MP4, M4V, WEBM, MOV (containing MP4)
● PDFs

Install for Windows 64-bit (7, 8.1, 10)

Download

● Download ​Google Chrome​ and install (follow installer instructions): click 'Download Chrome

for another platform' and select 'Windows 8 / 7 64-bit'

● Download ​7-Zip​ and install (follow installer instructions): .msi for 64-bit x64

● Download ​Node.js​ and install (follow installer instructions): version v8.x LTS or V9.x

● Download ​ImageMagick​ and install (follow installer instructions)

● Download ​Ghostscript​ and install (follow installer instructions): Windows (64 bit), GPL

Release

● Download ​Git for Windows​ and install (follow installer instructions)

● Download ​FFmpeg​ (64-bit Shared and 64-bit Dev)

31

https://www.google.com/chrome/browser/desktop/
http://www.7-zip.org/
http://nodejs.org/
http://www.imagemagick.org/script/binary-releases.php#windows
http://www.ghostscript.com/download/gsdnld.html
https://msysgit.github.io/
http://ffmpeg.zeranoe.com/builds/

● Download ​ExifTool​ (Windows Executable)

Install FFMPEG

● Use 7-Zip to extract FFmpeg downloads (right-click > 7-Zip > Extract Here)

● Create folder 'C:\Dev' if it does not already exist

● Move extracted FFmpeg Shared folder to 'C:\Dev\' and name it 'ffmpeg-win64-shared'

● Move extracted FFmpeg Dev folder to 'C:\Dev\' and name it 'ffmpeg-win64-dev'

Install EXIFTOOL

● Use 7-Zip to extract ExifTool download (Right-click > 7-Zip > Extract Here)

● Create folder 'C:\local\bin' if it does not already exist

● Rename binary to 'exiftool.exe' and move to 'C:\local\bin'

Set Environment

● For Windows 7

○ Right-click 'Computer'

○ Click 'Properties'

○ Click 'Advanced system settings'

● For Windows 8.1

○ Click Windows Logo and type 'env'

○ Click 'Edit the system environment variables'

● Click 'Environment Variables'

● Add 'C:\Program Files (x86)\Git\bin;C:\Program

Files\7-Zip;C:\local\bin;C:\Dev\ffmpeg-win64-shared\bin' to your system PATH variable

● You may have to log out and log back in for the environment variables to apply

32

http://www.sno.phy.queensu.ca/~phil/exiftool/

Clone SAGE2

● Launch command prompt (cmd.exe)

○ cd <directory_to_install_SAGE2>

○ git clone https://bitbucket.org/sage2/sage2.git

Generate HTTPS keys

● Edit '<SAGE2_directory>\keys\GO-windows.bat'

○ Add lines with list of hostnames for your server

○ Save file

● Double click 'GO-windows.bat'

○ On Windows 8.1 you will need right-click and select 'Run as Administrator'

Install Node.js Modules

33

● Launch command prompt (cmd.exe)

○ cd <SAGE2_directory>

○ npm run in​ (install pre-compiled binary modules) or ​npm install​ (compile and install

binary modules - requires ​Visual Studio Express 2013 for Windows Desktop​)

■ If binary packages are not available (such as after a new version of node)

and need to be compiled, you will also need to install Python 2.7.10 (not 3.x)

■ Make sure python.exe is added to Path (either manually or enabled in during

Python install under Customize Python).

● Troubleshooting

○ 'Error: ENOENT, stat 'C:\Users{User Name}\AppData\Roaming\npm'

■ You will need to manually create that folder

○ 'C:\Dev\ffmpeg-win64-dev\include\libavutil\common.h(34): fatal error C1083: Cannot

open include file: 'inttypes.h': No such file or directory'

■ Run ​npm install node-demux

■ If you have multiple Visual Studio installs, you may also need to add

--msvc_version=2013

■ Requires at least Visual Studio 2013 to install

Install for Mac OS X (10.7 - 10.11)

Download

● Download ​Google Chrome​ and install (follow installer instructions)

● Download ​Node.js​ and install (follow installer instructions)

● Download ​homebrew​ and install (Terminal command creates full install)

○ If you get a popup about installing the 'command line developer tools', select 'Install'

■ Press 'Return' in Terminal once command line tools install finishes

○ Run ​brew doctor​ once install finishes

Install Dependencies

● Open Terminal
○ brew install ffmpeg --with-libvpx --with-libvorbis --with-ffplay

○ brew install imagemagick --with-ghostscript --with-webp --with-fontconfig

34

https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.google.com/chrome/browser/desktop/
http://nodejs.org/
http://brew.sh/

○ brew install exiftool

Clone SAGE2

● Open Terminal

○ cd <directory_to_install_SAGE2>

○ git clone https://bitbucket.org/sage2/sage2.git

Generate HTTPS Keys

● Open the file 'GO-mac' inside the '<SAGE2_directory>/keys/' folder

○ Add additional host names for your server in the variable ​servers​ (optional)

○ Save file

● Open Terminal

○ cd <SAGE2_directory>/keys

○ ./GO-mac

■ enter your password when asked (the keys are added into the system)

Install Node.js Modules

● Open Terminal

○ cd <SAGE2_directory>

○ npm run in​ (install pre-compiled binary modules) or ​npm install​ (compile and install

binary modules)

ERRORS

When running ​npm run in​ and error is given stating: "fatal error: 'libavcodec/avcodec.h' file not found

#include <libavcodec/avcodec.h>". Xcode isn't searching /usr/local/ for include files or libraries. Open

Terminal and execute the following command: ​xcode-select --install

When starting SAGE2 an error is given regarding a node module that is missing a dependency. If

the error is regarding a libavXXX file, check the /usr/local/lib for libav links. Should the folder not

have the specified files, this means the brew installation of ffmpeg did not fully complete. Try reinstall

ffmpeg with brew. This may require using ​brew link​ and/or ​brew override​ commands.

If the following error is ​produced:

Assertion failed: (!uvio_active(&stream->io_watcher, UVPOLLOUT) ||

!ngx_queue_empty(&stream->write_completed_queue) ||

35

!ngx_queue_empty(&stream->write_queue) || stream->shutdown_req != NULL ||

stream->connect_req != NULL), function uv_read_stop, file ../deps/uv/src/unix/stream.c, line 1329.

Abort trap: 6

The current solution ​is to update node to the most recent (8.x LTS or 9.x currently).

Install using fresh Linux installation

If you want to install SAGE2 on a “clean” virtual machine or a new physical machine, we wrote
scripts to install all needed dependencies and the SAGE2 source code. At this moment, we
support Ubuntu, openSuse, and CentOS, all in 64-bit mode.

Install your favorite Linux distribution (basic desktop configuration, for instance XFCE or
Gnome). Then download one of the following scripts and run it as a regular user, with ‘sudo’
ability. The script will ask your password when needed to install packages.

Feel free to run the script one line at a time, if you have specific requirements.

Ubuntu (16.0.4)

https://bitbucket.org/sage2/sage2/downloads/SAGE2ubuntu-1604.sh

Ubuntu (14.0.4 and up)
https://bitbucket.org/sage2/sage2/downloads/SAGE2ubuntu.sh

CentOS (7 and up)

https://bitbucket.org/sage2/sage2/downloads/SAGE2centos7.sh

openSuse (13.x and up)
https://bitbucket.org/sage2/sage2/downloads/SAGE2opensuse.sh

For Docker, see:

https://bitbucket.org/sage2/sage2/wiki/Install%20(Docker)

36

https://bitbucket.org/sage2/sage2/downloads/SAGE2ubuntu-1604.sh
https://bitbucket.org/sage2/sage2/downloads/SAGE2centos7.sh
https://bitbucket.org/sage2/sage2/downloads/SAGE2opensuse.sh
https://bitbucket.org/sage2/sage2/wiki/Install%20(Docker)

Install Instructions for Docker (Windows, Mac OSX and Linux)

Install Docker

If you have Docker installed jump to "Install SAGE2". Follow the installation instructions for your
operating system here: ​https://docs.docker.com/installation/

Test Docker

Now verify that the installation has worked by downloading the ubuntu image and launching a
container:

docker run -i -t ubuntu /bin/bash
exit

Install SAGE2

Get the latest SAGE2 image from dockerhub
docker pull sage2/master

Install the data containers

docker create -v /sage2/config --name sage2Config sage2/master
docker create -v /sage2/keys --name sage2Keys sage2/master
docker create -v /root/Documents/SAGE2_Media --name sage2Uploads sage2/master

Generate ssl keys, using your domain name as an argument to the below command. For
example, if you are installing SAGE2 on sage2server.evl.uic.edu, then you need to pass it as
_.evl.uic.edu Example:

docker run --rm -it --volumes-from sage2Keys sage2/master /sage2/keys/GO-docker
_.evl.uic.edu

Edit the configuration file

docker run --rm -it --volumes-from sage2Config sage2/master /bin/bash
cd /sage2/config
vi docker-cfg.json
exit
Minimum configuration is setting the host (line 6).

37

https://docs.docker.com/installation/

Running SAGE2:
First time you run SAGE2, you need to create a container that specifies how to run SAGE2.
With the command below you create the container and run SAGE2:

docker run -d --volumes-from=sage2Config --volumes-from=sage2Keys
--volumes-from=sage2Uploads -p 9090:9090 -p 9292:9292 --name sage2 sage2/master

To see if it is running
docker ps

To see the logs
docker logs sage2

To stop sage2
docker stop sage2

To start sage2 (Always use this command when starting SAGE2, unless this is the first time
running!)

docker start sage2
Setting the time
By default the timezone is set to Chicago time. To set the right timezone for your installation,
you need to run the follow command while the container is running (For example setting it to
Arizona):

docker exec -e "CONTAINER_TIMEZONE=US/Arizona" sage2
/sage2/bin/docker_set_timezone.sh

Full list of timezone codes: ​https://en.wikipedia.org/wiki/List_of_tz_database_time_zones
To find your area code, look under column TZ*.
NOTE: The above command is not persistent. Timezone will reset once you stop it. We suggest
creating a startup script that first executes the run command (starting sage2 server) and then
executes the exec command to set the right timezone.

Updating SAGE2

docker pull sage2/master

Backing up your data: You only need to backup your sage2Uploads data container.

docker export --output="sage2Uploads.tar" sage2Uploads

More information about backing up data containers in docker here:

https://docs.docker.com/engine/reference/commandline/export/

38

https://en.wikipedia.org/wiki/List_of_tz_database_time_zones
https://docs.docker.com/engine/reference/commandline/export/

Restoring your data:

docker import sage2Uploads.tar

More information about restoring data containers in docker here:

https://docs.docker.com/engine/reference/commandline/import/

39

https://docs.docker.com/engine/reference/commandline/import/

Security
This section describes security features in the SAGE2 environment, addressing frontend and
backend aspects. At its core, SAGE2 is a web server enabling collaborative work on large
displays. Like any web server, it is susceptible to attacks and, like any web user, a SAGE2 user
is vulnerable to security issues. However, SAGE2 controls both the frontend (user experience)
and the backend (the web server itself), which somewhat limits the types of attacks.

Introduction
As for any web server within your infrastructure, you must apply the same best practices –
network access, user login, firewall, etc. – which are outside the scope of the SAGE2 software.

SAGE2 developers apply best practices to ensure a secure environment:

● SAGE2 is built upon Node.js (https://nodejs.org/), the industry-leading technology for
web services (Node.js's package ecosystem is the largest ecosystem of open source
libraries in the world). It is used by many companies (Netflix, IBM, Walmart, PayPal, …).

● SAGE2 is always built with the latest and most secure version of Node.js.
● SAGE2 requires administrators to install secure and up-to-date SSL certificates to

ensure secure and encrypted communication between the server and the users. All
communication between the server and users is encrypted (using HTTPS and Secure
Websockets).

● SAGE2 relies on Google Chrome and Electron as display and user interface (UI)
frameworks (https://electron.atom.io/). Electron is a framework that creates native
applications with web technologies, and is used by companies such as Microsoft,
Facebook, Slack, and Docker to deliver desktop applications

● User access to the SAGE2 server can be controlled by a password (simple MD5
hashing). This is just intended as a meeting access token, and does not replace secure
authentication to the network.

● Various security features can be enabled to enforce better security (cross-site scripting,
clickjacking protection, content type options, content security policy, etc.), which can limit
functionality in some cases. Best practices from Apache or NGINX can be applied (see
description below).

40

● External websites can be shown within SAGE2 and are run within ‘sandboxed’ browser
instances (i.e., webviews).

● Several companies ran security audits (e.g., using HP Fortify) after installing SAGE2 and
reported several CVEs (Common Vulnerabilities and Exposures, https://cve.mitre.org/),
which were promptly fixed. Various university campuses with SAGE2 installations (UIC,
UCSD) run continuous network audits as well.

● For maximum isolation, a SAGE2 server can be run within an application container
(SAGE2 supports Docker). Firewall and port mapping must be configured to enable
communication among the server, the displays and the users.

Server Configuration

As the SAGE2 server is an HTTP/HTTPS server, it is susceptible to common web attacks. The
first step to ensure security is to provide valid SSL certificates as described in this section.

The HTTP and HTTPS ports are the only ports that need to be opened for SAGE2 use: port 80
and 443 for production scenarios. The default ports for user development are 9292 and 9090.

To verify your setup, use “ssllabs.com” to ensure that your certificates are valid, up to date, and
using proper cyphers. Put your HTTPS address at the following URL:

https://www.ssllabs.com/ssltest​/
Within a few minutes, you should get a report of the validity of your setup. The SAGE2 server
should get an A or A+ rating.

The HTTP header responses from the SAGE2 server can be configured with the following
attributes:

41

Content type of the HTTP response, default value

● "Content-Type" ⇒ "text/html; charset=utf-8";

X-Frame-Options: the header can indicate whether a browser is allowed to render a page within
an <iframe> element or not. This is helpful to prevent clickjacking attacks by ensuring your
content is not embedded within other sites. For example, values can be "SAMEORIGIN" or
"DENY". See more here <https://developer.mozilla.org/en-US/docs/HTTP/X-Frame-Options>.

● “X-Frame-Options" ⇒ "SAMEORIGIN";

X-XSS-Protection: This header enables the Cross-Site Scripting (XSS) filter built into most
recent web browsers. It's usually enabled by default, so the role of this header is to re-enable
the filter for this particular website if it was disabled by the user.

● "X-XSS-Protection" ⇒ "1; mode=block";

X-Content-Type-Options: The only defined value, "nosniff", prevents Internet Explorer and
Google Chrome from MIME-sniffing a response away from the declared content-type. This also
applies to Google Chrome when downloading extensions. This reduces exposure to drive-by
download attacks and sites serving user uploaded content that, by clever naming, could be
treated by MSIE as executable or dynamic HTML files.

● "X-Content-Type-Options" ⇒ "nosniff";

More security features are also available, by setting extra parameters in your SAGE2
configuration file:

 security​:​ ​{
 ​// The SSL method to use
 secureProtocol​:​ ​"TLSv1_2_method"​,

​// Enable HSTS: HTTP Strict Transport Security - once HTTPS, always

HTTPS

 enableHSTS​:​ ​true​,
 ​// Enable CSP: Content-Security-Policy
 enableCSP​:​ ​true
 ​// Enable HPKP: HTTP Public Key Pinning Extension
 enableHPKP​:​ ​true​,
 ​},

secureProtocol: String, The SSL method, e.g. SSLv3_method, is used to force a SSL version. The

possible values depend on your installation of OpenSSL and version of NodeJS.

Configuration​: security.secureProtocol: string (undefined by default).

42

● Valid values: TLSv1_2_method, SSLv23_method, Default: SSLv23_method (as in
node v8.3)

HTTP Strict Transport Security: HSTS is an opt-in security enhancement. Once a supported
browser receives this header, the browser will prevent any communications from being sent
over HTTP to the specified domain and will instead send all communications over HTTPS.
Configuration​: security.enableHSTS: true/false (false by default)

● "Strict-Transport-Security" ⇒ "max-age=31536000";

Content-Security-Policy: Instead of blindly trusting everything that a server delivers,
Content-Security-Policy defines the HTTP header that allows you to create a whitelist of sources
of trusted content, and instructs the browser to only execute or render resources from those
sources. Even if an attacker can find a hole through which to inject script, the script won’t match
the whitelist, and therefore won’t be executed. ​default-src 'none' ➔ default policy that blocks
absolutely everything.
Configuration​: security.enableCSP: true/false (false by default)

● "Content-Security-Policy" ⇒
“default-src ‘none’;
plugin-types image/svg+xml;
object-src ‘self’;
child-src ‘self’ blob:;
connect-src *;
font-src ‘self’ fonts.gstatic.com;
form-action ‘self’;
img-src * data:;
media-src ‘self’;
style-src ‘self’ ‘unsafe-inline’ fonts.googleapis.com;
script-src * ‘unsafe-eval’;”

HTTP PUBLIC KEY PINNING: HPKP Key pinning is a trust-on-first-use (TOFU) mechanism.
The first time a browser connects to a host it lacks the information necessary to perform "pin
validation", so it is not able to detect and thwart a MITM attack (man in the middle). This feature
only allows detection of these kinds of attacks after the first connection.
Configuration​: security.enableHPKP: true/false (false by default)

● "Public-Key-Pins" ⇒ ‘pin-sha256=”Pin1”; pin-sha256="Pin2”;max-age=2592000;
includeSubDomains’

43

● The values of the ‘pins’ are generated with the scripts provided in the ‘keys’ folder of
SAGE2: GenHPKP.bat for Windows, and GenHPKP.sh for Unix (MacOSX and Linux).

○ The scripts take two parameters: your main CA certificate and the CA certificate
for 127.0.0.1 (the second pin is used as a backup).

○ Example: ​./GenHPKP.sh myserver-ca.crt 127.0.0.1-ca.crt
○ This generates two files (pin1.sha256, pin2.sha256) containing hashes/pins for

your site. The pins will be added to the HTTP responses, the browser will then
compare the values to the ones previously received. If different, the HTTP
request will be denied

● If you change or update your site certificates, the pins should be regenerated.

Web Certificates

SAGE2 can generate so-called “self-signed certificates” to support running the secure HTTPS
protocol (instead of the insecure common HTTP protocol). This requires SSL certificates to
prove the identity of the server to its clients.

Self-signed Certificates

To generate self-signed certificates:
● Windows

○ Edit '<SAGE2_directory>\keys\GO-windows.bat'
■ Add lines with a list of hostnames for your server
■ Save file

○ Double click 'GO-windows.bat'
● MacOSX

○ Open the file 'GO-mac' inside the '<SAGE2_directory>/keys/' folder
■ Add additional host names for your server in the variable servers

(optional)
■ Save file

○ Open Terminal
■ cd <SAGE2_directory>/keys
■ ./GO-mac

● enter your password when asked (the keys are added into the
system)

● Linux

44

○ Open the file 'GO-linux' inside the '<SAGE2_directory>/keys/' folder
■ Add additional host names for your server in the variable servers

(optional)
● for instance, add the short name and the fully qualified domain

name of your server
■ Save file

○ In a Terminal
■ cd <SAGE2_directory>/keys
■ ./GO-linux

However, self-signed certificates are only valid for testing and development since they are not
recognized by any trust authorities. Modern web browsers reject self-signed certificates and ask
the user to approve the security exception. Some mobile browsers ignore completely such
certificates.

Signed Certificates

Anyone installing SAGE2 should acquire valid SSL certificates from a reputable source. Most
campuses in the USA can get certificates for free (or a modest sum) through their local campus
IT department. For instance, see https://www.incommon.org/

InCommon, operated by Internet2, provides a secure and privacy-preserving trust fabric
for research and higher education, and their partners, in the United States. InCommon's
identity management federation serves 9 million end-users. InCommon also operates a
related assurance program, and offers certificate and multifactor authentication services.

Alternatively, web hosting companies usually sell certificates to their clients. A number of
security companies also sell host certificates, requiring you to prove that you “own” the server in
question.

A requirement for any certificate is that your host has a fully qualified domain name (FQDN): this
is the complete domain name for a specific computer, or host, on the Internet. The FQDN
consists of two parts: the hostname and the domain name. For example, an FQDN for a
hypothetical SAGE2 server might be sage.somecollege.edu.

Host certificates are only valid for a fixed period of time (1 or 3 years, usually) and for a unique
machine. Wildcard certificates supports any machine within a network subdomain (for instance,

45

*.my_dept.my_univ.edu​) and function the same way as host certificates. Not all certificate
authorities generate wildcard certificates and they are generally more expensive.

The process goes as follows:

1. you generate a request and a private key for any given server,
2. you send the request to a certificate authority,
3. you receive a signed certificate

a. you might also receive a CA (certificate authority) certificate providing information
on the chain of authority entities involved in your certificate.

4. your signed certificate and your private key are setup in SAGE2 to provide a valid secure
SSL connection with the clients

a. The CA certificate chain can be provided to speed up the validation process.

There are four files involved:

● A CSR or Certificate Signing request is a block of encrypted text that is generated on the
server for which the certificate will be used. It contains information that will be included in
your certificate, such as your organization name, common name (domain name), locality,
and country. It also contains the public key that will be included in your certificate. The
file uses the “.csr” extension and it looks like this:

○ -----​BEGIN​ CERTIFICATE REQUEST​-----

○ MIIC4jC...

○ …

○ -----​END​ CERTIFICATE REQUEST​-----

● A private key is created at the same time that you create the CSR. It usually named with
the extension “.key”

○ -----​BEGIN​ RSA PRIVATE KEY​-----

○ MIIEp…

○ ...

○​hw​==

○ -----​END​ RSA PRIVATE KEY​-----

● The server certificate received from your certificate authority, named with the extension
“.cer”, is a “X509 Certificate only, Base64 encoded” file:

○ -----​BEGIN​ CERTIFICATE​-----

○ MIIF​….

○ ….

○ -----​END​ CERTIFICATE​-----

46

● You might get a CA certificate, or multiple certificates (in case of a hierarchy of certificate
authorities), which is a single “X509, Base64 encoded” file.

○ -----​BEGIN​ CERTIFICATE​-----

○ MIIF​….

○ ….

○ -----​END​ CERTIFICATE​-----

○ -----​BEGIN​ CERTIFICATE​-----

○ MIIF​….

○ ….

○ -----​END​ CERTIFICATE​-----

○ -----​BEGIN​ CERTIFICATE​-----

○ MIIF​….

○ ….

○ -----​END​ CERTIFICATE​-----

SAGE2 requires the private key and the signed certificate. Optionally, it will load the CA
certificates, if available. Certificates for SAGE2 should be named very precisely in order to be
loaded automatically by the server, and stored in the ‘keys’ folder:

● the server private key should be named: [​host​]-server.key
○ where [​host​] is the value associated with the key ‘host’ in your configuration file
○ example: if my server is called ​‘traoumad.evl.uic.edu’ ​then my key file should be:

■ traoumad.evl.uic.edu-server.key​ in the ‘keys’ folder
● the server host certificate should be named: [​host​]-server.crt

○ where [​host​] is the value associated with the key ‘host’ in your configuration file
○ example: if my server is called ​‘traoumad.evl.uic.edu’ ​then my key file should be:

■ traoumad.evl.uic.edu-server.crt​ in the ‘keys’ folder
● optionally, the CA certificates should be named: [​host​]-ca.crt

○ where [​host​] is the value associated with the key ‘host’ in your configuration file
○ example: if my server is called ​‘traoumad.evl.uic.edu’ ​then my key file should be:

■ traoumad.evl.uic.edu-ca.crt​ in the ‘keys’ folder
● for domain certificates:

○ the domain private key should be named with a ‘_’ and then the domain name
and the extension “.key”

■ example: for the “evl.uic.edu” domain, the file is named “_.evl.uic.edu.key”
○ the domain certificate should be named with a ‘_’ and then the domain name and

the extension “.crt”

47

■ example: for the “evl.uic.edu” domain, the file is named “_.evl.uic.edu.crt”
○ the CA certificate should be named with a ‘_’ and then the domain name and the

extension “-ca.crt”
■ ex: for the “evl.uic.edu” domain, the file is named “_.evl.uic.edu-ca.crt”

You also need the same series of files for each and every hostname that your SAGE2 server
uses and is accessed through. This is important for multi-home computers (often the case in
clusters, or machines having connections to multiple networks). Those certificates are usually
used internally and can be self-signed certificates. Common names are added in your
“alternate_hosts” section of your SAGE2 configuration, such as “127.0.0.1” and “localhost”.

For example, the following configuration will need a valid signed certificate for the name
“iridium.evl.uic.edu” and self-signed certificates for the following names: “localhost”, “127.0.0.1”,
“131.193.183.199”, “iridium.evl.optiputer.net”. These are all valid names to access this unique
server from multiple network locations:

 name​:​ ​"Cybercommons",
 host​:​ ​"iridium.evl.uic.edu",
 port​:​ ​443,
 index_port​:​ ​80,
...

 alternate_hosts​:​ [
 ​"localhost",
 ​"127.0.0.1",
 ​"131.193.183.199",
 ​"iridium.evl.optiputer.net"
 ​],
...

The extra self-signed certificates can be generated by the commands described in the beginning

of the section (scripts in the ‘keys’ folder).

Let’s Encrypt

A third way is emerging to generate valid certificates and increase the use of valid certificates
on the Internet. Here is an excerpt from “​https://letsencrypt.org/about/​”:

48

https://letsencrypt.org/about/

Let’s Encrypt is a free, automated, and open certificate authority (CA), run for the public’s
benefit. Let’s Encrypt is a service provided by the ​Internet Security Research Group
(ISRG)​.
The key principles behind ​Let’s Encrypt​ are:

● Free: Anyone who owns a domain name can use ​Let’s Encrypt to obtain a trusted
certificate at zero cost.

● Automatic: Software running on a web server can interact with ​Let’s Encrypt to
painlessly obtain a certificate, securely configure it for use, and automatically take
care of renewal.

● Secure: ​Let’s Encrypt serves as a platform for advancing TLS security best
practices, both on the CA side and by helping site operators properly secure their
servers.

● Transparent: All certificates issued or revoked will be publicly recorded and
available for anyone to inspect.

● Open: The automatic issuance and renewal protocol will be published as an open
standard that others can adopt.

● Cooperative: Much like the underlying Internet protocols themselves, ​Let’s Encrypt
is a joint effort to benefit the community, beyond the control of any one organization

The process is still fairly manual and mostly described for the Unix operating system but it works
and can generate valid signed certificates for use in SAGE2.

The process is fairly automated for existing mainstream HTTP servers (Apache, Nginx, …), but
requires some automation for SAGE2. This is work-in-progress and we hope to support it in the
future. The process involves having the HTTP server running and providing a generated file to
the ‘letsencypt.org’ server to prove the server identity. The CSR request is then generated and
signed automatically to provide a valid certificate. This would automatically provide a free
certificate for anyone with a server and a FQDN hostname.

Audits

UCSD Campus network

From ___@eng.ucsd.edu:

49

https://letsencrypt.org/isrg/
https://letsencrypt.org/isrg/
https://letsencrypt.org/isrg/

1 - “Campus did a Qualsys scan of my SAGE2 install, and it looks like it is susceptible to
directory traversal. Also, I have a public interface that is configured, but it is not in the
SAGE2 configuration, yet it is still responding via IP address.”

2 - The IP address is not listed as an alternate host, and is there solely to allow updating
of SAGE2 via npm since I could not get npm to honor the proxy config. Not a big deal, as
long as the public facing interface is only there for software updates/patching.

I'll see if I can get a specific CVE, but here is the detailed output from the scan minus the
/etc/passwd file contents. Note, this interface should not be responding on 9090 at all,
and I use password protection on the site as well:

GET /..//..//..//..//..//..//..//..//..//etc/passwd HTTP/1.1
Host: [REDACTED]
Connection: Keep-Alive

HTTP/1.1 200 OK
Content-Type:
X-Frame-Options: SAMEORIGIN
X-XSS-Protection: 1; mode=block
X-Content-Type-Options: nosniff
Access-Control-Allow-Headers: Range
Access-Control-Expose-Headers: Accept-Ranges, Content-Encoding, Content-Length,
Content-Range
Cache-Control: no-cache, no-store, must-revalidate
Pragma: no-cache
Expires: 0
Content-Length: 2147
Date: Fri, 02 Jun 2017 05:31:45 GMT
Connection: keep-alive

Air France – KLM / Group Technology Office

From: ___@klm.com

50

Find attached a security scan as performed by HP Fortify. As you may want to have a
look first, I did not include your developers. You are welcome to forward them to your
team member as you see fit.

Noted as most important findings:

● Webserver within the Docker container: directory traversal should be configured off,

e.g. to prevent access to the /etc/password file.
● JavaScript should prevent Cross Side Scripting (XSS) – the report shows code

samples / recommendations.
● Weakness introduced by Self Signed Certificates: there are SSL code suites that are

not safe anymore.

There are more details and recommendations in the report. We are happy to discuss
them with you and your development team. As the report already contains many details,
please let us know if / when you like me to arrange such a call.

[….] However we can only proceed if the security vulnerabilities have been addressed, a
standard procedure in admitting new applications.

NASA's Goddard Space Flight Center

___@nasa.gov
NASA Center for Climate Simulation
Goddard Space Flight Center

“Our security team has done a preliminary review of SAGE2 and I thought you’d be
interested in the findings (see attached). If a conversation would be useful, let me know.
We remain very interested in trying to get our proxy approach to work.”

51

