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Abstract—Current web-based collaboration systems, such as 

Google Hangouts, WebEx, and Skype, primarily enable single 
users to work with remote collaborators through video 
conferencing and desktop mirroring. The original SAGE 
software, developed in 2004 and adopted at over one hundred 
international sites, was designed to enable groups to work in 
front of large shared displays in order to solve problems that 
required juxtaposing large volumes of information in ultra high-
resolution. We have developed SAGE2, as a complete redesign 
and implementation of SAGE, using cloud-based and web 
browser technologies in order to enhance data intensive co-
located and remote collaboration. This paper provides an 
overview of SAGE2’s infrastructure, the technical design 
challenges, and the afforded benefits to data intensive 
collaboration. Lastly, we provide insight on how future 
collaborative applications can be developed to support large 
displays and demonstrate the power and flexibility that SAGE2 
offers in collaborative scenarios through a series of use cases. 
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I. INTRODUCTION 
Today, scientific and industrial data is collected, stored, and 

analyzed digitally, often in the cloud. Modern science is driven 
by new types of digital instruments and sensors capable of 
collecting data at ever-increasing resolutions. Natural 
phenomena, from global weather systems to chemical reactions 
at the atomic level, can now be simulated with supercomputers, 
generating massive volumes of data. These troves of data are 
invaluable to researchers and businesses as they explore the 
raw information and evidence needed for new insights, 
discoveries, and innovations. However, making those insights 
is an increasingly complicated task as the scale and complexity 
of data continue to grow at unprecedented rates. Since big data 
problems frequently require the combined efforts of many 
individuals from disparate fields, the next generation of data 
intensive visualization and interaction environments will need 
to enable collaboration and group work. 

To deal with the scale and complexity of data, the 2007 
DOE Visualization and Knowledge Discovery workshop report 
[1] and the 2008 NSF Building Effective Virtual Organizations 

report [2] recognized that new modalities for accessing more 
visual information were necessary, and described large shared 
displays as the type of environments that are crucial for 
collaborative cyber-enabled exploration. Furthermore, there is 
now conclusive evidence that large display environments 
enable collaboration and significantly amplify the way users 
make sense of large-scale, complex data [3-5]. 

Since large display environments present technical 
challenges and unique affordances, specialized software and 
middleware are needed to allow users to capitalize on these 
benefits in authentic settings. In 2004, our group developed 
SAGE, the Scalable Adaptive Graphics Environment [6], for 
large shared displays without resolution constraints, which we 
term Scalable Resolution Shared Displays (SRSD). 

SAGE is an open-source middleware that provides multiple 
users with a common operating environment to access, display, 
and share an assortment of data intensive information. The 
software allows each user to create a pointer on the SRSD by 
using their own personal device, or to directly approach the 
SRSD and interact through a multi-touch interface. In this 
manner, multiple users can simultaneously add and interact 
with content. SAGE displays pixel streams from remote 
sources by utilizing high-speed networks to render content 
ranging from high definition images and videos to PDF 
documents and laptop screens. At the time, SAGE, in 
conjunction with an SRSD, represented a new type of digital 
lens – an ultra high-resolution display that can effectively 

 
Fig. 1. A typical SAGE2 session, depicting multiple applications 
windowed on a SRSD. This figure illustrates the wide array of  content 
supported by SAGE2, including images, videos, PDFs, 2D and 3D custom 
applications, and an off-the-shelf application from a remote source.  



visualize large volumes of data in a collaborative environment. 
As a result, over one hundred sites have adopted SAGE around 
the world over the past decade. However, its architecture was 
based on a monolithic design that made it increasingly difficult 
to integrate new capabilities as user requirements grew. 

Since SAGE was first deployed in 2004, the technical 
landscape has shifted. With the advent of HTML5, web 
browsers have become powerful rendering tools. 
Contemporary browsers provide access to high-performance 
graphics and networking capabilities that were formerly only 
achievable with native applications. Web applications and 
JavaScript programming are becoming increasingly popular, 
attracting a large community of developers eager to reach a 
broader audience. In turn, this audience has embraced web-
based applications due to their ease of access. 

In this paper, we present SAGE2 (depicted in Fig. 1), a 
prototype for the next generation of collaborative SRSD 
middleware that capitalizes on the increasing power of the 
cloud and web browser. To our knowledge, SAGE2 is the first 
collaborative windowing environment for SRSDs that runs in a 
web browser. This paradigm affords many advantages, but 
required us to overcome an array of technical challenges. 

II. LESSONS LEARNED FROM DEPLOYING SRSDS 
Since SAGE was released in 2004, we have worked closely 

with users in academia, research, and industry to capture 
authentic collaborative workflows and motivate SAGE 
development [7,8]. In addition to these direct observations of 
SAGE in use, we conducted a user survey to capture feedback 
from 40 sites on how SAGE was used, its benefits, and features 
users wished SAGE had. Of the desired future features of 
SAGE, the most requested were 1) integration of multi-user 
applications, 2) enhanced real-time distance collaboration, and 
3) a reduced barrier to entry. 

A. Collaborative Workflows Enabled by SAGE 
Results from our user survey indicate that our user 

community is diverse, with 63% from academia, 20% from 
industry, and 17% government research labs. 70% of these 
sites reported that their SAGE installation is used for more than 
one project. Specific uses of SAGE include sharing 
telemedicine lectures, showing the output of large-scale 
scientific simulations, and running multiple ultra high-
resolution applications simultaneously. Our survey also 
indicated an upward trend on adoption and usage of SRSD 
technologies. Currently 55% of sites have more than one 
SAGE installation, with 62% projecting to have more than one 
in the next four years. Also, currently 20% of sites have more 
than four SAGE installations, with 32.5% projecting to have 
more than four in the next four years. These installations vary 
in resolution, with many sites having SRSDs below 8 MPixels 
and many other sites having SRSDs above 100 MPixels. 

In addition to receiving feedback through a user survey, we 
have worked closely with authentic SAGE users and observed 
its use. Theses observations have given us insight on several 
types of collaborative workflows enabled by SAGE that are 
difficult to achieve through other platforms. For instance, 
SAGE was often used for regular, large group meetings where 
group members presented short updates to their collaborators. 

In these meetings, SAGE enabled lightning collaboration, 
where each collaborator could rapidly share content, such as 
images, videos, and PDFs, or share the screen from their 
laptop, in order to illustrate their progress. Transitions between 
presenters were quick due to each user being able to load 
content and create a pointer from their personal device, rather 
than taking turns using a master controller. 

We also observed collaborators using SAGE in a parallel 
investigation workflow. In this workflow, several collaborators 
gathered together to investigate a problem using a SRSD. Each 
user had specific domain expertise that pertained to one aspect 
of a problem they were attempting to solve. Working on 
personal machines, these users each explored one or two online 
databases, or loaded data in an interactive application on their 
laptops to display its content. Seeing these disparate pieces of 
information together on a SRSD prompted new questions, 
which each researcher explored in parallel during the meeting, 
sharing results step-by-step in SAGE. This work was only 
possible because SAGE permitted multiple users to 
simultaneously share and control content on the SRSD. 

SAGE was used in another type of collaborative work 
session, which we call single-driver, multiple-navigators. In 
this type of session, the driver would share an interactive 
application running on his/her laptop to explore a dataset and 
share findings. Navigators would ask questions, prompting the 
driver to perform specific operations on the dataset through 
his/her personal machine. SAGE enabled this collaborative 
work by allowing everyone to see the content simultaneously 
on a SRSD and by capturing real-time changes on the user’s 
machine. In addition, navigators could point to content on the 
SRSD, using pointers created from their personal machines, to 
highlight aspects of the content. 

Lastly, SAGE has been used for remote collaborative work 
sessions, with participants sharing multimedia content between 
SAGE environments with remote gigabit data streams. These 
modes of co-located and remote collaboration work remarkably 
well for a variety of problems, but only act as a step towards 
improved computer supported cooperative work. 

B. Collaborative Roadblocks in SAGE 
While the original SAGE has enabled collaborative 

workflows that were previously not possible, users have 
identified situations in which they desired more. In order to 
share and interact with content on the SRSD, users needed to 
download and install a client application. We noticed that in 
situations with frequent new users, the requirement to install 
this client application to engage in a SAGE session acted as a 
barrier to entry and limited participation for new users in 
lighting collaboration scenarios. 

We observed that parallel investigation workflows were 
challenging in places where users wanted to interactively 
engage the content of their collaborators or synthesize results 
from multiple investigations, since content on shared screens 
remained controllable only by the single owner. We observed 
that this often resulted in duplicated work or diminished 
participation. We also noticed that while users could share 
large volumes of information, the lack of integration across 



content made it challenging for researchers to combine results 
from the parallel investigations. 

In collaborative workflows involving single-driver, 
multiple-navigators, there was a challenge with collaborators 
needing to switch roles. Since everyone could not directly 
manipulate content within the shared application 
simultaneously, users would be forced to take turns as the 
driver. Occasionally, one navigators needed to duplicate the 
work of the driver, so they could interact with the data on their 
personal devices. This delayed the collaborative session, and in 
some instances limited participation and work sharing. 

Finally, we noted that remote collaboration frequently 
involves configurations of users that were not adequately 
supported by the original SAGE architecture. Remote single 
users (a user without access to a SAGE session or SRSD) were 
limited to viewing and sharing content by standard 
teleconferencing systems, which did not adequately allow for 
participation. In addition, while multiple SAGE sites could 
freely and independently reposition content to fit the needs of a 
co-located group, other sites were unable to gain insight on the 
position of individual items on remote SRSDs. This often 
resulted in miscommunication due to the lack of context (e.g. 
“see the image on the right”). 

Our user survey supports our observations concerning 
collaborative roadblocks. Users listed over 25 applications that 
they wished were SAGE compatible for multi-user interaction, 
many of which were web-based, such as Google Maps. Users 
also identified enhanced remote collaboration through data 
sharing and native teleconferencing as a top desired priority. 

III. RELATED WORK 
Collaboration has been enhanced by advances in different 

areas of research, such as leveraging web-based applications 
for real-time communication and utilizing large display 
systems for rendering data intensive content. While the work 
described below (outlined in table 1) has made significant 
contributions, none of them encapsulate a holistic approach to 
better enable collaboration in data intensive scenarios. 

A. Web-based Collaboration 
Co-located and remote collaboration has been greatly 

affected by the advancement of web-based technologies. The 
web is increasingly used to collaborate in a variety of scenarios 
such as teaching, corporate meetings and manufacturing. 
Google Hangouts, Skype, and WebEx [9-11] are examples of 
successful commercial products designed to enable remote 
collaboration. While they are all effective tools for single users, 
none of them successfully address the needs for distributed 
groups working with large volumes of high-resolution data. 
Binary Meetings [12], a web-based collaboration tool for lab 
tutorial classes, enables students to interact with each other and 
with lecturers through chat rooms, email, discussion forums 
and webcam teleconferences. However, researchers note that 
students preferred to physically meet with the instructor when 
posing questions because of the lack of real-time document 
sharing. DiCoDEv [13] is a web-based, virtual collaborative 
platform that can be used during manufacturing product and 
process design evaluation. The DiCoDEv platform allows 
multiple users to work in a collaborative and distributed 
manner, but is limited to a specific domain. CollaBoard [14] 
uses web technologies to create a video, audio, and data 
conferencing system that imitates life-sized face-to-face 
meetings. CollaBoard achieves this through very specific 
hardware configurations and careful calibration of cameras, 
which therefore does not provide a flexible and scalable 
solution in authentic scenarios. 

B. Large Display Systems and Parallel Rendering 
OmegaLib [15,16] uses Equalizer [17] for parallel 

rendering and provides the tools to develop immersive 2D-3D 
applications for flexible systems ranging from tiled display 
walls to CAVE environments. OmegaLib also offers event 
handling that supports multiple heterogeneous devices. 
However, Omegalib does not provide an easy way to manage 
multiple content windows. The Cross Platform Cluster 
Graphics Library (CGLX) [18] is an OpenGL graphics 
framework for distributed, high performance visualization 
systems. CGLX allows users to easily develop new or adapt 
existing OpenGL desktop applications for visualization clusters 

TABLE I.  COMPARISON OF SYSTEMS THAT ENABLE COLLABORATION 

 Simultaneous 
Multi-user 
Interaction 

Windowing 
Environment for 

Multiple 
Applications 

Extensible 
2D and 3D 

Applications 

Off-the-shelf 
Application 

Support 

Multi-site 
Remote 

Collaboration 

Supports 
Content with 

Unlimited 
Resolution 

Leverages 
Cloud-based 

Infrastructure 

Google Hangouts X    X  X 
Skype, WebEx     X  X 

Binary Meetings     X  X 
DiCoDEv     X  X 

CollaBoard X   X X  X 
OmegaLib X  X   X  
Equalizer   X   X  

CGLX X  X X  X  
Liveboard    X X   
Impromptu X X  X    

CubIT X X    X  
Mezzanine X X   X   
Montage  X    X X 

Display Custer X X X X  X  
SAGE X X X X X X  

SAGE2 X X X X X X X 



such as tiled displays and multi-projector systems. CGLX 
supports collaboration through multiple multi-touch devices. 
Input events are synchronized with the display environment 
and scene information is streamed to the mobile device [19]. 
CGLX only supports Mac OSX and Linux, thereby creating a 
barrier to entry for Windows users. Yokoyama and Ishikawa 
used emerging HTML5 features to utilize web browsers for 
distributed rendering of web applications [20]. However, their 
approach only achieved scalable resolutions up to 8240x4920. 
While allowing vast volumes of information to be rendered in a 
single high-performance application, none of these frameworks 
support the multi-windowing environments that are necessary 
for dynamically juxtaposing information from various sources. 

C. Large Display Systems for Collaboration 
Large display environments have been used to display large 

amounts of data and utilize the physical space to organize 
group work. Researchers are able to work independently, as 
well as perform collaborative data analysis with an entire co-
located or distributed group. Liveboard is a large rear projected 
interactive display for meetings, presentations, and remote 
collaboration [21]. While limited by resolution and a single 
lightpen for interaction at the wall, Liveboard still serves as an 
early design for large display collaborative systems. 
Impromptu is a more recent interaction framework where users 
can share applications between multiple display devices 
ranging from tablets to a large shared display [22]. Since 
devices in Impromptu pixel stream their content, the window 
resolution is limited by the resolution of the source device. 
CubIT is a presentation and public display space running on 
The Cube, a series of large cluster-driven multi-touch walls 
[23]. CubIT supports uploading, sharing, and organizing an 
array of multimedia content, but does not provide an extensible 
platform for interactive applications. Mezzanine is a 
commercially available custom-built conference room 
environment designed for streaming live video and sharing of 
documents between co-located or remote users. However, 
Mezzanine is a fixed setup that occupies an entire room and 
only supports a limited number of connections for both co-
located and remote sites. [24]. Recognizing the wealth of 
content on the web, Montage [25] aims to use large tiled 
displays to render multiple web pages, using grouping and 
filtering techniques to make discoveries. Montage is primarily 
designed as a passive display receiving limited user input in the 
form of keywords received from mobile devices. 
DisplayCluster [26] provides a windowing system for 
multimedia content across SRSDs. Similar to SAGE, 
DisplayCluster relies purely on pixel streaming from remote 
rendering sources. While enabling users to juxtapose a variety 
of content, all systems mentioned in this section impose 
collaborative constraints, ranging from limiting content 
resolution to requiring specific hardware configurations. 

IV. SAGE2 
The prior work discussed above has shown that co-located 

and remote collaborators greatly benefit from the ability to 
share and interact with data in real-time, display content in 
ultra high-resolution, and juxtapose volumes of information to 
extract insight. However, no system to our knowledge has 
encapsulated all these features into a single collaborative 

framework. We believe that other systems do not support these 
features because the underlying architecture makes it 
prohibitively difficult to achieve. We investigated a new 
paradigm, leveraging cloud-based and web browser 
technologies to drive a SRSD, and enable real-time 
communication and multi-user interaction. We hypothesized 
that a novel web-based platform could achieve the performance 
of stand-alone applications, while better enabling authentic, 
multi-user, interactive collaborative workflows. 

A. Design Rationale 
Our goal in designing SAGE2 was to create the next 

generation system for facilitating data intensive co-located and 
remote collaboration using a SRSD. Interactive applications 
with simultaneous multi-user input, enhanced real-time 
communication, and a lower barrier to entry were three major 
priorities according to feedback from authentic users from the 
first generation of SAGE. To address these needs, we aimed to 
completely redesign and implement SAGE due to the fact that 
its aging architecture was not well suited to handle emerging 
technologies. Additionally, SAGE and other platforms for 
driving large display environments are built as custom 
standalone applications, which in our experience requires a 
technical expert with hours of training to install and support, 
limiting the adoption at new sites. Therefore, we decided to 
pursue a different approach that leverages cloud-based and web 
browser technologies for their increasing collaborative power, 
flexibility, and ubiquity. 

The power of web browsers is increasing at an 
extraordinary rate. Browsers now support native two-
dimensional and three-dimensional rendering through HTML5 
and WebGL. Hardware acceleration is leveraged for both 
rendering and CSS transforms. WebSocket communication has 
been standardized, enabling persistent two-way communication 
between server and client. WebRTC is currently under 
development, with many features already integrated into web 
browsers that allow real-time peer-to-peer communication. 
Additionally, browsers can capture events from input devices 
such as a mouse, keyboard, and touchscreen. 

Web browsers have become a ubiquitous application found 
on any visual computing device. They are platform 
independent and do not require technical expertise to install. 
The web browser also acts as a portal to the vast amounts of 
data stored and accessed through the cloud. Numerous APIs 
allow developers to retrieve static and dynamic data, perform 
data manipulation, and visualize and store the results. Web-
based communication also enables real-time collaboration and 
data sharing through peer-to-peer connections. 

These recent developments to web-based technologies have 
enabled high performance graphics and networking capabilities 
that were formerly only achievable with native applications. 
Therefore, we have designed SAGE2 using the web browser 
for rendering and user interaction, and the cloud-based 
infrastructure for data retrieval and real-time communication. 

B. Architecture 
We decided to explore whether or not the new features of 

web browsers would allow them to perform as well as 
standalone applications in regard to high-performance graphics 



and networking. The SAGE2 architecture provides a proof of 
concept that applications can leverage the web browser runtime 
environment to achieve the necessary performance to drive 
SRSDs and support large volumes of data, while also 
benefiting from the cloud-based infrastructure to facilitate 
remote collaboration. 

SAGE2 consists of several components: the Server, various 
Display Clients, the Audio Client, various Interaction Clients, 
and the Input Client. Fig. 2 illustrates how clients connect to 
the Server, which handles all inputs and outputs to maintain 
and synchronize content. The Server is built upon Node.js [27], 
a platform for building network applications in JavaScript. 
Node.js is cross-platform and comes with a package manager 
that downloads all dependencies. This greatly reduces the time 
for installation and no longer requires a technical expert. The 
only two prerequisites for running SAGE2 are that Node.js is 
installed on the machine that hosts the Server, and up-to-date 
web browsers are installed on any machine running a client. 

C. Design Challenges 
To explain how we achieved this novel approach, we 

describe the process of overcomming numerous technical 
design challenges that were presented throughout the 
development process. 

1) Challenges of supporting cluster environments 
One of the priorities for designing SAGE2 was hardware 

flexibility, so that it could be configured for scalable display 
resolutions. A SRSD can be run by one or multiple machines 
each connected to one or multiple monitors. Any of the 
SAGE2 components can run on the same machine or 
distributed across a cluster. Fig. 3 shows a range of single 
machine and cluster-based SRSD configurations. 

Supporting a cluster environment presented multiple 
challenges. First, we needed to make all monitors appear as 
one seamless graphical environment, regardless of the number 
or configuration of Display Client machines. The SAGE2 
Display Clients are instances of a web browser that connect to 
the SAGE2 Server by visiting a URL. To address this 
challenge we attach a parameter to the URL in order to identify 
each Display Client with a unique ID, mapping it to a specific 
row and column on the SRSD. Given its row and column, each 
Display Client shows its own viewport by offsetting content, 
based on its position on the grid. This results in users viewing 
content that spans multiple Display Clients that appears 
continuous and can be moved across the display seamlessly. 

Synchronizing audio with multiple video feeds across the 
SRSD presented another challenge. We determined that a 
separate Audio Client was necessary in order to mix all the 
audio sources. Like the SAGE2 Display Clients, the Audio 
Client runs in a web browser and gets initialized by connecting 
to the SAGE2 Server by visiting a URL. When a video file is 
loaded into SAGE2, the Audio Client will output the sound and 
synchronize the Display Clients’ video with its audio. We 
determined that it was most important that audio be 
uninterrupted, whereas video could withstand minor 
modifications in order to synchronize with the audio. 
Therefore, we designed the Audio Client to control the 
playback of a video, and the Display Clients synchronize their 
video feed with the audio. 

Another challenge with supporting cluster-based systems 
was how to properly handle distributed rendering with 
synchronized animations for interactive applications. To 
address this, each Display Client renders a portion of the 
overall application depending on the application’s window size 
and position. Using WebSockets, the SAGE2 Server handles 
animation synchronization by broadcasting instructions to all 
Display Clients to redraw. Each Display Client responds to the 
server when it has finished rendering its frame. Once the 
Server receives responses from all Display Clients, it 

 
Fig. 2. Illustration depicting SAGE2’s architeture and communication 
scheme. The SAGE2 Server is a customized web server with clients 
accessed through visiting a URL in a web browser. 

   
Fig. 3. Range of SRSD configurations. Panel A shows a single 4K monitor connected to a single machine running SAGE2. Pannel B shows eight monitors 
connected to two GPUs on a single machine sunning SAGE2. Fig. 1 is an exmaple of tiled wall with eighteen displays connected to a six machine cluster, with 
the SAGE2 Server running on the head node. Lastly, Panel C shows a cylindrical tiled wall with seventy-two displays connected to a thirty-six machine cluster, 
with the SAGE2 Server running on the head node. 

A B C 



broadcasts the next redraw command. In this manner, 
applications remain visually synchronized. 

2) Challenges of enabling real-time multi-user interaction 
Web pages rendered in a browser serve as both our Display 

Clients and our Interaction Clients. This allows users to interact 
with content on the SRSD by opening a browser and 
connecting to the SAGE2 Server by visiting a URL. This 
greatly reduces the barrier to entry for new users since there is 
nothing to install, and they simply use an application that they 
are already familiar with. By visiting the SAGE UI Interaction 
Client page, a user can see an overview of the SRSD and can 
load any of the supported data types or applications. The user 
can also easily and quickly share local documents, show their 
screen, or add a pointer to the SRSD. 

Since the Interactions Clients are running on personal 
devices, there was a challenge in correlating interaction events 
with desired actions on the SRSD. Additionally, web browsers 
are not designed to handle simultaneous inputs from multiple 
distinct users. To address this, we capture events from the 
Interaction Client devices, such as a laptop or smartphone, and 
forward them to the SAGE2 Server. The Server then 
broadcasts these events to each Display Client. This enables 
remote devices to be used for interaction and removes the 
constraint of one pointer per machine. 

Another challenge we addressed was expanding the types 
of user interaction enabled by SAGE2. We wanted to support 
application interaction and window management in four major 
interaction zones for SRSDs: directly at the display using touch 
gestures, standing near the display using motion tracking or 
6DOF devices, seated near the screen using a gyro-mouse or 
laptop pointer, or indirect control further away from the screen 
using the SAGE UI [28]. To accomplish this, we utilize the 
Omicron input abstraction utility library [29]. Omicron is 
capable of receiving data from different types of input devices 
including touch overlays, motion tracking systems, game 
controllers, and speech recognition tools (Fig. 4). Omicron then 
streams data from these heterogeneous devices in a uniform 
manner that the SAGE2 Server can interpret. 

3) Challenges for supporting multi-user applications 
Interacting with ultra high-resolution displays from a 

distance makes preceision pointing difficult. In standard 
desktop environments, resizing a window is commonly done 

by click-and-drag on a corner and moving a window by click-
and-drag on a title bar. In order to remove the preceision 
necessary to accomplish these tasks, we have enabled two 
interaction modes, window manipulation and application 
interaction, that a user can toggle between. When in window 
manipulation mode, events anywhere on an application will be 
performed on the window (click-and-drag to move, scroll to 
resize). When in application interaction mode, all events are 
forwarded to the interactive application to handle. 

Another challenge was to support loading custom web 
applications dynamically. Typically, web applications are only 
loaded once per browser tab and utilize the browser’s default 
event handling system. In order to create multiple instances of 
a web application across the SRSD, we have encapsulated all 
web applications in a JavaScript class. Therefore, an 
application can be dynamically instantiated as many times as 
requested. We also forward SAGE2 events to these 
applications, so that they can respond to multi-user inputs, such 
as independent keyboards, pointing devices, and touches. 

A final challenge with supporting applications in SAGE2, 
was sharing them across sites. In order to share applications 
with remote sites and engage in collaborative interaction, we 
have designed all applications as objects accessible through a 
URL. This allows a reference to the application to be retrieved 
from any remote location, whether it is another SAGE2 site or 
a remote single-user on his/her laptop. 

D. Overcoming the Collaborative Roadblocks 
Designing the Interaction Clients as applications accessed 

through a web browser addressed the issues presented in the 
lightning collaboration scenarios. New users are no longer 
presented with a barrier when wanting to share and interact 
with content on the SRSD. Creating custom event handlers for 
managing simultaneous independent inputs addressed both the 
parallel investigation  workflow and single-driver, multiple-
navigators roadblocks. Multiple users can now simultaneously 
interact with shared content allowing investigators to 
manipulate content originally shared by a collaborator. 

V. APPLICATION DEVELOPMENT 
Many research and industrial collaborative projects take 

advantage of web-based content. Online data portals and 
visualization tools have increased tremendously in recent 

   
Fig. 4. Mutli-user interaction with expanded input modalities. Panel A shows a radial menu system that allows multiple users to simultanesouly interact with a 
media brower. Panel B depicts a user interacting at a SRSD using a multi-touch overlay to perform a pinch-zoom gesture. Panel C shows a user interacting 
with SAGE2 using a video game controller that has been supplemented with motion tracking reflectors. 
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years, generating demand for direct interaction with web-based 
content in a group setting. Web development has a large 
community supporting many APIs, and browsers are becoming 
as powerful as stand-alone applications at rendering high-
quality two-dimensional and three-dimensional content. 
SAGE2 builds off of these developments and to our knowledge 
is the first to provide support for both custom and off-the-shelf 
application integration into a multi-user setting on SRSDs. 

A. Open Development 
The SAGE2 framework has been designed to enable rapid 

application integration and development for a community 
interested in supporting multi-user collaborative environments. 
SAGE2 provides a rich platform for developing custom 
applications. We provide a JavaScript API to create native 
SAGE2 applications. Developers can also make standalone 
applications SAGE2 compatible by adding a few lines of code 
to their source. For off-the-shelf applications where users don’t 
have access to the source code, SAGE2 can stream pixels and 
forward events to a remote machine running the application. 

The SAGE2 JavaScript API can be used for developing 
applications from scratch or porting existing web content. The 
API allows developers to create applications with scalable 
resolution. SAGE2 uses the <canvas> element to access native 
rendering routines, which gives access to two-dimensional and 
three-dimensional contexts. External libraries, such as 
kinetic.js, D3.js, or three.js, can be utilized for higher-level 
graphics abstraction. The API also provides an event handler 
that supports simultaneous multi-user interaction from a variety 
of input devices. SAGE2 handles distributing and 
synchronizing the rendering of an application, hiding the 
cluster-based compatability from the developer. 

SAGE2 also supports pixel streaming and event forwarding 
for external applications. This provides the ability to utilize 
SAGE2 in order to view and interact with standalone 
applications at ultra high-resolution and handle inputs from 
multiple simultaneous users. Inserting a few lines of code 
allows a standalone application to communicate with the 
SAGE2 server. The application then streams its frame buffer to 
SAGE2 and receives events from the SAGE2 server. The 
scalable nature of SAGE2 allows these standalone applications 
to stream output of any size. 

Off-the-shelf applications can also run in SAGE2. A 
remote machine must run a  lightweight SAGE2 messaging 
client in addition to the application. The SAGE2 messaging 
client scrapes pixels from the remote machine’s desktop and 
translates SAGE2 events into real events for a mouse and 
keyboard. Even though off-the-shelf applications are inherently 
single user, multiple users can still interact with these 
applications through SAGE2. All the events coming from 
different users will be perceived as being generated from a 
single user. Though SAGE2 allows applications to render at 
any resolution, such applications are constrained by the 
resolution of the display connected to the remote machine. 
Custom or off-the-shelf applications can stream pixels to 
remote SAGE2 sites through remote gigabit data streams, 
which helps enable distance collaboration. 

B. Prototype applications 
We have developed several standard and custom prototype 

applications for SAGE2. By default SAGE2 provides image 
viewer, PDF viewer, and video player applications. We have 
also developed a custom notepad application using the SAGE2 
JavaScript API that allows multiple users to simultaneously 
and independently position cursors and add text to a document. 
This application demonstrates the usefulness of SAGE2, not 
only for organizing content in collaborative sessions, but also 
for collaborative application interaction. This prototype 
application utilizes the multi-user event handling system of 
SAGE2, which serves as a template for developing more 
complex, collaborative applications. Additionally, we have 
integrated the Google Maps API into a SAGE2 application. 
This specifically addresses one of the desired features 
requested in the user survey from section II.B. The Google 
Maps application provides ultra high-resolution map imagery 
and allows any users to change location and zoom level, or add 
additional layers of information, such as weather and traffic. 

We have also developed a web browser application that 
allows users to launch a browser within the SAGE2 display 
environment and interact with HTML rich content. This is an 
external C++ application built using the Chromium Embedded 
Framework (CEF3) [30], which is a library that can render 
browser content into an off-screen buffer. This buffer is sent to 
SAGE2 using the pixel-streaming paradigm, while the 
application receives user interaction from SAGE2. This was 
necessary to develop as an external standalone application 
since many web pages prohibit themselves from being 
embedded inside another web page. 

We have also installed the SAGE2 messaging client on a 
remote machine running ParaView in order to allow multiple 
users to view and interact with this off-the-shelf scientific 
visualization tool. SAGE2 events, mouse clicks and keyboard 
presses, from various users are all mapped down to the remote 
machine’s mouse and keyboard. This allows multiple users to 
control an application that is otherwise single-user. 

VI. USE CASES 
Data intensive problems require the combined efforts of 

many individuals from disparate fields. Since these problems 
are complex, technologies that aspire to support collaborative 
infrastructures must be flexible enough to aid in solving 
individual problems of varying domains. SAGE2 is still under 
development as a prototype, currently used regularly at a few 
alpha phase installations, and therefore has not been evaluated 
with a formal user study. In the rest of this section, we outline 
three use cases based on real-world scenarios that highlight 
how SAGE2 can uniquely handle the following collaboration 
sessions: 1) imitate co-located collaboration with a physically 
distributed team, 2) collaboration between multiple teams 
working on different aspects of a related problem, and 3) 
allowing a single remote user to join a collaborative session. 

A. Imitate Co-located Collaboration 
It is often the case that a team is distributed at two or more 

physical locations, but wishes to work as though they were co-
located. In this scenario, everyone is working on the same 
problem and looking at the same data. SAGE2 helps bridge the 



gap of physical distance by mirroring shared content at all 
sites, including live video and audio streams. To illustrate how 
SAGE2 is used in such a situation, we will describe its use 
during the judging of a research based photo competition 
conducted at a university. The panel of judges is distributed 
across two or three campuses and wishes to rank all 
submissions during a single joint session. 

A SAGE2 session is started at one site, and the SRSD is 
mirrored at all other sites by simply visiting the same URL. All 
images along with their accompanying research description are 
uploaded to the SAGE2 Server and displayed on each SRSD. 
Additionally, the multi-user notepad application is launched, 
allowing any judge to jot down thoughts or comments at any 
time. During the first phase of judging, each image and its 
accompanying description are enlarged to full resolution and 
viewed one at a time. After a brief discussion, the image is 
placed in one of three groups – top contender, possible 
contender, not a contender. Once all images have been 
discussed, the second phase of judging begins. This stage, 
depicted in Fig. 5, is more freeform with all judges working 
simultaneously. Spatial orientation of the images is used to 
compare and rank the images. A better image is moved up 
higher on the display – if an image is only a few pixels higher 
than another it is considered just barely of higher quality, 
whereas if it is positioned many pixels higher it is considered 
significantly superior. Any judge at any site can rearrange the 
images, add comments to the notepad, or communicate with 
the other judges. This process continues until a consensus is 
reached and the winners are determined. 

SAGE2 provides a number of unique features that enable 
this type of collaboration. Since SAGE2 provides a windowing 
environment on an ultra high-resolution SRSD, the judges are 
able to view multiple high-resolution images simultaneously. 
The multi-user paradigm allows multiple judges to reorder the 
windows or add comments to the notepad simultaneously, 
reducing completion time for the task. The video conference 
allows judges at different locations to see and talk to each other 
as if they were present in the same room. This is incredibly 
important due to the fact that images are submitted from a 
variety of domains, and each judge has a unique expertise. 
Since the SRSD is mirrored at all locations, when a judge at 
one location interacts with the content, all other sites 
immediately reflect the modification. This gives collaborators 
at all sites a shared context from which to communicate. 

B. Remote Collaborators Working on a Distributed Problem 
Another common scenario is when distributed teams work 

with the same or similar data and want to share related data and 
discoveries. In this case, each team may have a unique 
configuration for their SRSD, and not all documents and 
applications need to be present at each location. To illustrate 
how SAGE2 is used in this situation, we will describe its use 
for disaster management planning in the city of Chicago. 

Disaster management planning requires multiple groups to 
work together. In this example, we will illustrate the 
collaboration between Chicago city officials and researchers at 
Argonne National Lab. The city officials are responsible for 
crisis management and direct the disaster management 

planning. They are familiar with the city, its infrastructure, and 
its population. The researchers utilize their supercomputing 
facilities to simulate and visualize various disasters. Each team 
uses a wide array of content to analyze their data including 
interactive maps, PDFs, images, charts, and graphs. 

Members of each team simultaneously use a multitude of 
applications to answer relevant questions. Panel A in Fig. 6 
shows city officials reviewing statistics, such as most densely 
populated area vs. day of week and number of public trains 
running vs. time of day. Panel B in Fig. 6 shows the 
researchers running various disaster simulations, such as a 
tornado or a train derailment, and creating advanced 
visualizations. Both teams plot data on a map to see the spatial 
distribution and overall impact of these disasters. Once the city 
officials have determined a new scenario or one of the 
researchers have made an interesting discovery, they share 
their finding with the other team. Each team has independent 
control over all documents and applications on their SRSD. 
This allows important information to be shared between sites, 
while keeping less relevant data private. 

SAGE2 allows these teams to view and interact with 
various types of data simultaneously, such as interactive maps, 
PDFs, and images. More than one person at a given site can 
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interact with any application simultaneously, which increases 
productivity and removes the need to switch who is in control. 
Each location can arrange the documents and applications 
independently in order to create a layout that is most effective 
for their team. Also, not all documents and applications are 
shared between sites, which helps reduce visual clutter, and 
ensures that only relevant content is available at each site. 

C. Remote Single User Joining a Co-located Session 
SAGE2 can also be leveraged when a single member of a 

team is traveling or working from home. In this case, everyone 
is working on the same problem and looking at the same data. 
The major difference between this scenario and the first is that 
the single remote member does not have access to a SRSD, but 
rather only has his/her laptop or tablet. To illustrate how 
SAGE2 works in this situation, we will describe a team 
collectively writing a co-authored publication. 

A team of five is outlining a paper and reviewing 
previously published works. One of the members is attending a 
three-day conference, so the team schedules its meetings 
during lunch breaks. The other four members start a SAGE2 
session and share numerous PDFs, a multi-user notepad, and 
the lead author’s laptop screen. The remote member joins the 
session from her laptop, which gives an overview of the 
content and layout on the SRSD. She can get details of any 
specific shared application on demand by viewing it in a 
separate browser tab. Fig. 7 depicts the team reading PDFs and 
taking notes on the related work, while the lead author 
integrates relevant content into a draft of the paper on his 
laptop. When the meeting concludes, the session can be saved, 
so the team can resume later without having to re-upload and 
reposition all relevant documents and applications. 

SAGE2 allows a remote user to engage in a remote 
collaboration session without the need for special hardware or 
software. A browser allows the remote user to view and 
interact with shared content via an overview of the whole 
SRSD and detailed applications viewable one at a time. The 
co-located team and the remote user both receive immediate 
input from each other. SAGE2 allows both the co-located team 
and the remote individual to take advantage of the technology 
at their disposal, rather than forcing a group to fall back to the 
lowest common denominator. SAGE2 also allows the team to 
continue their work at a later time by saving the session. 

VII. CONCLUSION 
Collaboration has always been an essential dimension of 

work in research, academia, and industry. In the next decade, 
collaboration will be even more essential, as multidisciplinary 
teams tackle complex big data problems. While SRSDs have 
been shown to be powerful tools for collaborative work, 
specialized software is required to effectively leverage these 
environments. We have built a next generation SRSD 
collaborative platform, SAGE2, that integrates cloud-based and 
web browser technologies into an environment suited for data 
intensive problem solving in authentic scenarios. SAGE2 taps 
into the original SAGE user community and has the potential 
to expand this community, because of its enhanced support for 
development and integration of multi-user applications, and its 
lower barrier to entry. We invite the community to use SAGE2 
as a platform to develop multi-user applications for devices 
ranging from a standard desktop to a cluster-driven tiled 
display wall. With the ability to provide support for various 
input devices, its seamless extension towards multi-user 
scenarios, and its ability to leverage the web infrastructure, we 
have illustrated SAGE2 as a powerful tool for group work 
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through a series of use cases. More information about SAGE2 
can be found at its website, http://sage2.sagecommons.org. 

VIII. DISCUSSION / FUTURE WORK 
Research on SAGE2 is ongoing and currently stands as a 

functioning prototype. We anticipate an open-source beta 
release by November 2014. In addition to improving stability 
of the platform, two of our major future goals are to research 
linking content and further improving remote collaboration. 
We plan to explore the possibilities of creating links between 
applications in order to exchange data, such as the ability of a 
mapping application to plot the locations of all photos that are 
geotagged on the SRSD. We will also be exploring various 
techniques to improve remote collaboration where the 
technologies at each site are heterogeneous. We plan to 
synchronize applications across multiple sites and provide a 
window into a remote site’s SRSD to give a visual overview of 
their content arrangement. 
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