
SAGE2: A New Approach for
Data Intensive Collaboration Using

Scalable Resolution Shared Displays
Thomas Marrinan, Jillian Aurisano, Arthur

Nishimoto, Krishna Bharadwaj, Victor Mateevitsi,
Luc Renambot, Lance Long, Andrew Johnson

Dept. of Computer Science
University of Illinois at Chicago

Chicago, IL, USA

Jason Leigh

Dept. of Computer Science

University of Hawaiʻi at Mānoa
Honolulu, HI, USA

Abstract—Current web-based collaboration systems, such as

Google Hangouts, WebEx, and Skype, primarily enable single
users to work with remote collaborators through video
conferencing and desktop mirroring. The original SAGE
software, developed in 2004 and adopted at over one hundred
international sites, was designed to enable groups to work in
front of large shared displays in order to solve problems that
required juxtaposing large volumes of information in ultra high-
resolution. We have developed SAGE2, as a complete redesign
and implementation of SAGE, using cloud-based and web
browser technologies in order to enhance data intensive co-
located and remote collaboration. This paper provides an
overview of SAGE2’s infrastructure, the technical design
challenges, and the afforded benefits to data intensive
collaboration. Lastly, we provide insight on how future
collaborative applications can be developed to support large
displays and demonstrate the power and flexibility that SAGE2
offers in collaborative scenarios through a series of use cases.

Keywords—Large Displays; Co-located Collaboration; Remote
Collaboration; Window Manager; Cloud Technologies; Multi-user
Interaction; Computer Supported Cooperative Work

I. INTRODUCTION
Today, scientific and industrial data is collected, stored, and

analyzed digitally, often in the cloud. Modern science is driven
by new types of digital instruments and sensors capable of
collecting data at ever-increasing resolutions. Natural
phenomena, from global weather systems to chemical reactions
at the atomic level, can now be simulated with supercomputers,
generating massive volumes of data. These troves of data are
invaluable to researchers and businesses as they explore the
raw information and evidence needed for new insights,
discoveries, and innovations. However, making those insights
is an increasingly complicated task as the scale and complexity
of data continue to grow at unprecedented rates. Since big data
problems frequently require the combined efforts of many
individuals from disparate fields, the next generation of data
intensive visualization and interaction environments will need
to enable collaboration and group work.

To deal with the scale and complexity of data, the 2007
DOE Visualization and Knowledge Discovery workshop report
[1] and the 2008 NSF Building Effective Virtual Organizations

report [2] recognized that new modalities for accessing more
visual information were necessary, and described large shared
displays as the type of environments that are crucial for
collaborative cyber-enabled exploration. Furthermore, there is
now conclusive evidence that large display environments
enable collaboration and significantly amplify the way users
make sense of large-scale, complex data [3-5].

Since large display environments present technical
challenges and unique affordances, specialized software and
middleware are needed to allow users to capitalize on these
benefits in authentic settings. In 2004, our group developed
SAGE, the Scalable Adaptive Graphics Environment [6], for
large shared displays without resolution constraints, which we
term Scalable Resolution Shared Displays (SRSD).

SAGE is an open-source middleware that provides multiple
users with a common operating environment to access, display,
and share an assortment of data intensive information. The
software allows each user to create a pointer on the SRSD by
using their own personal device, or to directly approach the
SRSD and interact through a multi-touch interface. In this
manner, multiple users can simultaneously add and interact
with content. SAGE displays pixel streams from remote
sources by utilizing high-speed networks to render content
ranging from high definition images and videos to PDF
documents and laptop screens. At the time, SAGE, in
conjunction with an SRSD, represented a new type of digital
lens – an ultra high-resolution display that can effectively

Fig. 1. A typical SAGE2 session, depicting multiple applications
windowed on a SRSD. This figure illustrates the wide array of content
supported by SAGE2, including images, videos, PDFs, 2D and 3D custom
applications, and an off-the-shelf application from a remote source.

visualize large volumes of data in a collaborative environment.
As a result, over one hundred sites have adopted SAGE around
the world over the past decade. However, its architecture was
based on a monolithic design that made it increasingly difficult
to integrate new capabilities as user requirements grew.

Since SAGE was first deployed in 2004, the technical
landscape has shifted. With the advent of HTML5, web
browsers have become powerful rendering tools.
Contemporary browsers provide access to high-performance
graphics and networking capabilities that were formerly only
achievable with native applications. Web applications and
JavaScript programming are becoming increasingly popular,
attracting a large community of developers eager to reach a
broader audience. In turn, this audience has embraced web-
based applications due to their ease of access.

In this paper, we present SAGE2 (depicted in Fig. 1), a
prototype for the next generation of collaborative SRSD
middleware that capitalizes on the increasing power of the
cloud and web browser. To our knowledge, SAGE2 is the first
collaborative windowing environment for SRSDs that runs in a
web browser. This paradigm affords many advantages, but
required us to overcome an array of technical challenges.

II. LESSONS LEARNED FROM DEPLOYING SRSDS
Since SAGE was released in 2004, we have worked closely

with users in academia, research, and industry to capture
authentic collaborative workflows and motivate SAGE
development [7,8]. In addition to these direct observations of
SAGE in use, we conducted a user survey to capture feedback
from 40 sites on how SAGE was used, its benefits, and features
users wished SAGE had. Of the desired future features of
SAGE, the most requested were 1) integration of multi-user
applications, 2) enhanced real-time distance collaboration, and
3) a reduced barrier to entry.

A. Collaborative Workflows Enabled by SAGE
Results from our user survey indicate that our user

community is diverse, with 63% from academia, 20% from
industry, and 17% government research labs. 70% of these
sites reported that their SAGE installation is used for more than
one project. Specific uses of SAGE include sharing
telemedicine lectures, showing the output of large-scale
scientific simulations, and running multiple ultra high-
resolution applications simultaneously. Our survey also
indicated an upward trend on adoption and usage of SRSD
technologies. Currently 55% of sites have more than one
SAGE installation, with 62% projecting to have more than one
in the next four years. Also, currently 20% of sites have more
than four SAGE installations, with 32.5% projecting to have
more than four in the next four years. These installations vary
in resolution, with many sites having SRSDs below 8 MPixels
and many other sites having SRSDs above 100 MPixels.

In addition to receiving feedback through a user survey, we
have worked closely with authentic SAGE users and observed
its use. Theses observations have given us insight on several
types of collaborative workflows enabled by SAGE that are
difficult to achieve through other platforms. For instance,
SAGE was often used for regular, large group meetings where
group members presented short updates to their collaborators.

In these meetings, SAGE enabled lightning collaboration,
where each collaborator could rapidly share content, such as
images, videos, and PDFs, or share the screen from their
laptop, in order to illustrate their progress. Transitions between
presenters were quick due to each user being able to load
content and create a pointer from their personal device, rather
than taking turns using a master controller.

We also observed collaborators using SAGE in a parallel
investigation workflow. In this workflow, several collaborators
gathered together to investigate a problem using a SRSD. Each
user had specific domain expertise that pertained to one aspect
of a problem they were attempting to solve. Working on
personal machines, these users each explored one or two online
databases, or loaded data in an interactive application on their
laptops to display its content. Seeing these disparate pieces of
information together on a SRSD prompted new questions,
which each researcher explored in parallel during the meeting,
sharing results step-by-step in SAGE. This work was only
possible because SAGE permitted multiple users to
simultaneously share and control content on the SRSD.

SAGE was used in another type of collaborative work
session, which we call single-driver, multiple-navigators. In
this type of session, the driver would share an interactive
application running on his/her laptop to explore a dataset and
share findings. Navigators would ask questions, prompting the
driver to perform specific operations on the dataset through
his/her personal machine. SAGE enabled this collaborative
work by allowing everyone to see the content simultaneously
on a SRSD and by capturing real-time changes on the user’s
machine. In addition, navigators could point to content on the
SRSD, using pointers created from their personal machines, to
highlight aspects of the content.

Lastly, SAGE has been used for remote collaborative work
sessions, with participants sharing multimedia content between
SAGE environments with remote gigabit data streams. These
modes of co-located and remote collaboration work remarkably
well for a variety of problems, but only act as a step towards
improved computer supported cooperative work.

B. Collaborative Roadblocks in SAGE
While the original SAGE has enabled collaborative

workflows that were previously not possible, users have
identified situations in which they desired more. In order to
share and interact with content on the SRSD, users needed to
download and install a client application. We noticed that in
situations with frequent new users, the requirement to install
this client application to engage in a SAGE session acted as a
barrier to entry and limited participation for new users in
lighting collaboration scenarios.

We observed that parallel investigation workflows were
challenging in places where users wanted to interactively
engage the content of their collaborators or synthesize results
from multiple investigations, since content on shared screens
remained controllable only by the single owner. We observed
that this often resulted in duplicated work or diminished
participation. We also noticed that while users could share
large volumes of information, the lack of integration across

content made it challenging for researchers to combine results
from the parallel investigations.

In collaborative workflows involving single-driver,
multiple-navigators, there was a challenge with collaborators
needing to switch roles. Since everyone could not directly
manipulate content within the shared application
simultaneously, users would be forced to take turns as the
driver. Occasionally, one navigators needed to duplicate the
work of the driver, so they could interact with the data on their
personal devices. This delayed the collaborative session, and in
some instances limited participation and work sharing.

Finally, we noted that remote collaboration frequently
involves configurations of users that were not adequately
supported by the original SAGE architecture. Remote single
users (a user without access to a SAGE session or SRSD) were
limited to viewing and sharing content by standard
teleconferencing systems, which did not adequately allow for
participation. In addition, while multiple SAGE sites could
freely and independently reposition content to fit the needs of a
co-located group, other sites were unable to gain insight on the
position of individual items on remote SRSDs. This often
resulted in miscommunication due to the lack of context (e.g.
“see the image on the right”).

Our user survey supports our observations concerning
collaborative roadblocks. Users listed over 25 applications that
they wished were SAGE compatible for multi-user interaction,
many of which were web-based, such as Google Maps. Users
also identified enhanced remote collaboration through data
sharing and native teleconferencing as a top desired priority.

III. RELATED WORK
Collaboration has been enhanced by advances in different

areas of research, such as leveraging web-based applications
for real-time communication and utilizing large display
systems for rendering data intensive content. While the work
described below (outlined in table 1) has made significant
contributions, none of them encapsulate a holistic approach to
better enable collaboration in data intensive scenarios.

A. Web-based Collaboration
Co-located and remote collaboration has been greatly

affected by the advancement of web-based technologies. The
web is increasingly used to collaborate in a variety of scenarios
such as teaching, corporate meetings and manufacturing.
Google Hangouts, Skype, and WebEx [9-11] are examples of
successful commercial products designed to enable remote
collaboration. While they are all effective tools for single users,
none of them successfully address the needs for distributed
groups working with large volumes of high-resolution data.
Binary Meetings [12], a web-based collaboration tool for lab
tutorial classes, enables students to interact with each other and
with lecturers through chat rooms, email, discussion forums
and webcam teleconferences. However, researchers note that
students preferred to physically meet with the instructor when
posing questions because of the lack of real-time document
sharing. DiCoDEv [13] is a web-based, virtual collaborative
platform that can be used during manufacturing product and
process design evaluation. The DiCoDEv platform allows
multiple users to work in a collaborative and distributed
manner, but is limited to a specific domain. CollaBoard [14]
uses web technologies to create a video, audio, and data
conferencing system that imitates life-sized face-to-face
meetings. CollaBoard achieves this through very specific
hardware configurations and careful calibration of cameras,
which therefore does not provide a flexible and scalable
solution in authentic scenarios.

B. Large Display Systems and Parallel Rendering
OmegaLib [15,16] uses Equalizer [17] for parallel

rendering and provides the tools to develop immersive 2D-3D
applications for flexible systems ranging from tiled display
walls to CAVE environments. OmegaLib also offers event
handling that supports multiple heterogeneous devices.
However, Omegalib does not provide an easy way to manage
multiple content windows. The Cross Platform Cluster
Graphics Library (CGLX) [18] is an OpenGL graphics
framework for distributed, high performance visualization
systems. CGLX allows users to easily develop new or adapt
existing OpenGL desktop applications for visualization clusters

TABLE I. COMPARISON OF SYSTEMS THAT ENABLE COLLABORATION

 Simultaneous
Multi-user
Interaction

Windowing
Environment for

Multiple
Applications

Extensible
2D and 3D

Applications

Off-the-shelf
Application

Support

Multi-site
Remote

Collaboration

Supports
Content with

Unlimited
Resolution

Leverages
Cloud-based

Infrastructure

Google Hangouts X X X
Skype, WebEx X X

Binary Meetings X X
DiCoDEv X X

CollaBoard X X X X
OmegaLib X X X
Equalizer X X

CGLX X X X X
Liveboard X X
Impromptu X X X

CubIT X X X
Mezzanine X X X
Montage X X X

Display Custer X X X X X
SAGE X X X X X X

SAGE2 X X X X X X X

such as tiled displays and multi-projector systems. CGLX
supports collaboration through multiple multi-touch devices.
Input events are synchronized with the display environment
and scene information is streamed to the mobile device [19].
CGLX only supports Mac OSX and Linux, thereby creating a
barrier to entry for Windows users. Yokoyama and Ishikawa
used emerging HTML5 features to utilize web browsers for
distributed rendering of web applications [20]. However, their
approach only achieved scalable resolutions up to 8240x4920.
While allowing vast volumes of information to be rendered in a
single high-performance application, none of these frameworks
support the multi-windowing environments that are necessary
for dynamically juxtaposing information from various sources.

C. Large Display Systems for Collaboration
Large display environments have been used to display large

amounts of data and utilize the physical space to organize
group work. Researchers are able to work independently, as
well as perform collaborative data analysis with an entire co-
located or distributed group. Liveboard is a large rear projected
interactive display for meetings, presentations, and remote
collaboration [21]. While limited by resolution and a single
lightpen for interaction at the wall, Liveboard still serves as an
early design for large display collaborative systems.
Impromptu is a more recent interaction framework where users
can share applications between multiple display devices
ranging from tablets to a large shared display [22]. Since
devices in Impromptu pixel stream their content, the window
resolution is limited by the resolution of the source device.
CubIT is a presentation and public display space running on
The Cube, a series of large cluster-driven multi-touch walls
[23]. CubIT supports uploading, sharing, and organizing an
array of multimedia content, but does not provide an extensible
platform for interactive applications. Mezzanine is a
commercially available custom-built conference room
environment designed for streaming live video and sharing of
documents between co-located or remote users. However,
Mezzanine is a fixed setup that occupies an entire room and
only supports a limited number of connections for both co-
located and remote sites. [24]. Recognizing the wealth of
content on the web, Montage [25] aims to use large tiled
displays to render multiple web pages, using grouping and
filtering techniques to make discoveries. Montage is primarily
designed as a passive display receiving limited user input in the
form of keywords received from mobile devices.
DisplayCluster [26] provides a windowing system for
multimedia content across SRSDs. Similar to SAGE,
DisplayCluster relies purely on pixel streaming from remote
rendering sources. While enabling users to juxtapose a variety
of content, all systems mentioned in this section impose
collaborative constraints, ranging from limiting content
resolution to requiring specific hardware configurations.

IV. SAGE2
The prior work discussed above has shown that co-located

and remote collaborators greatly benefit from the ability to
share and interact with data in real-time, display content in
ultra high-resolution, and juxtapose volumes of information to
extract insight. However, no system to our knowledge has
encapsulated all these features into a single collaborative

framework. We believe that other systems do not support these
features because the underlying architecture makes it
prohibitively difficult to achieve. We investigated a new
paradigm, leveraging cloud-based and web browser
technologies to drive a SRSD, and enable real-time
communication and multi-user interaction. We hypothesized
that a novel web-based platform could achieve the performance
of stand-alone applications, while better enabling authentic,
multi-user, interactive collaborative workflows.

A. Design Rationale
Our goal in designing SAGE2 was to create the next

generation system for facilitating data intensive co-located and
remote collaboration using a SRSD. Interactive applications
with simultaneous multi-user input, enhanced real-time
communication, and a lower barrier to entry were three major
priorities according to feedback from authentic users from the
first generation of SAGE. To address these needs, we aimed to
completely redesign and implement SAGE due to the fact that
its aging architecture was not well suited to handle emerging
technologies. Additionally, SAGE and other platforms for
driving large display environments are built as custom
standalone applications, which in our experience requires a
technical expert with hours of training to install and support,
limiting the adoption at new sites. Therefore, we decided to
pursue a different approach that leverages cloud-based and web
browser technologies for their increasing collaborative power,
flexibility, and ubiquity.

The power of web browsers is increasing at an
extraordinary rate. Browsers now support native two-
dimensional and three-dimensional rendering through HTML5
and WebGL. Hardware acceleration is leveraged for both
rendering and CSS transforms. WebSocket communication has
been standardized, enabling persistent two-way communication
between server and client. WebRTC is currently under
development, with many features already integrated into web
browsers that allow real-time peer-to-peer communication.
Additionally, browsers can capture events from input devices
such as a mouse, keyboard, and touchscreen.

Web browsers have become a ubiquitous application found
on any visual computing device. They are platform
independent and do not require technical expertise to install.
The web browser also acts as a portal to the vast amounts of
data stored and accessed through the cloud. Numerous APIs
allow developers to retrieve static and dynamic data, perform
data manipulation, and visualize and store the results. Web-
based communication also enables real-time collaboration and
data sharing through peer-to-peer connections.

These recent developments to web-based technologies have
enabled high performance graphics and networking capabilities
that were formerly only achievable with native applications.
Therefore, we have designed SAGE2 using the web browser
for rendering and user interaction, and the cloud-based
infrastructure for data retrieval and real-time communication.

B. Architecture
We decided to explore whether or not the new features of

web browsers would allow them to perform as well as
standalone applications in regard to high-performance graphics

and networking. The SAGE2 architecture provides a proof of
concept that applications can leverage the web browser runtime
environment to achieve the necessary performance to drive
SRSDs and support large volumes of data, while also
benefiting from the cloud-based infrastructure to facilitate
remote collaboration.

SAGE2 consists of several components: the Server, various
Display Clients, the Audio Client, various Interaction Clients,
and the Input Client. Fig. 2 illustrates how clients connect to
the Server, which handles all inputs and outputs to maintain
and synchronize content. The Server is built upon Node.js [27],
a platform for building network applications in JavaScript.
Node.js is cross-platform and comes with a package manager
that downloads all dependencies. This greatly reduces the time
for installation and no longer requires a technical expert. The
only two prerequisites for running SAGE2 are that Node.js is
installed on the machine that hosts the Server, and up-to-date
web browsers are installed on any machine running a client.

C. Design Challenges
To explain how we achieved this novel approach, we

describe the process of overcomming numerous technical
design challenges that were presented throughout the
development process.

1) Challenges of supporting cluster environments
One of the priorities for designing SAGE2 was hardware

flexibility, so that it could be configured for scalable display
resolutions. A SRSD can be run by one or multiple machines
each connected to one or multiple monitors. Any of the
SAGE2 components can run on the same machine or
distributed across a cluster. Fig. 3 shows a range of single
machine and cluster-based SRSD configurations.

Supporting a cluster environment presented multiple
challenges. First, we needed to make all monitors appear as
one seamless graphical environment, regardless of the number
or configuration of Display Client machines. The SAGE2
Display Clients are instances of a web browser that connect to
the SAGE2 Server by visiting a URL. To address this
challenge we attach a parameter to the URL in order to identify
each Display Client with a unique ID, mapping it to a specific
row and column on the SRSD. Given its row and column, each
Display Client shows its own viewport by offsetting content,
based on its position on the grid. This results in users viewing
content that spans multiple Display Clients that appears
continuous and can be moved across the display seamlessly.

Synchronizing audio with multiple video feeds across the
SRSD presented another challenge. We determined that a
separate Audio Client was necessary in order to mix all the
audio sources. Like the SAGE2 Display Clients, the Audio
Client runs in a web browser and gets initialized by connecting
to the SAGE2 Server by visiting a URL. When a video file is
loaded into SAGE2, the Audio Client will output the sound and
synchronize the Display Clients’ video with its audio. We
determined that it was most important that audio be
uninterrupted, whereas video could withstand minor
modifications in order to synchronize with the audio.
Therefore, we designed the Audio Client to control the
playback of a video, and the Display Clients synchronize their
video feed with the audio.

Another challenge with supporting cluster-based systems
was how to properly handle distributed rendering with
synchronized animations for interactive applications. To
address this, each Display Client renders a portion of the
overall application depending on the application’s window size
and position. Using WebSockets, the SAGE2 Server handles
animation synchronization by broadcasting instructions to all
Display Clients to redraw. Each Display Client responds to the
server when it has finished rendering its frame. Once the
Server receives responses from all Display Clients, it

Fig. 2. Illustration depicting SAGE2’s architeture and communication
scheme. The SAGE2 Server is a customized web server with clients
accessed through visiting a URL in a web browser.

Fig. 3. Range of SRSD configurations. Panel A shows a single 4K monitor connected to a single machine running SAGE2. Pannel B shows eight monitors
connected to two GPUs on a single machine sunning SAGE2. Fig. 1 is an exmaple of tiled wall with eighteen displays connected to a six machine cluster, with
the SAGE2 Server running on the head node. Lastly, Panel C shows a cylindrical tiled wall with seventy-two displays connected to a thirty-six machine cluster,
with the SAGE2 Server running on the head node.

A B C

broadcasts the next redraw command. In this manner,
applications remain visually synchronized.

2) Challenges of enabling real-time multi-user interaction
Web pages rendered in a browser serve as both our Display

Clients and our Interaction Clients. This allows users to interact
with content on the SRSD by opening a browser and
connecting to the SAGE2 Server by visiting a URL. This
greatly reduces the barrier to entry for new users since there is
nothing to install, and they simply use an application that they
are already familiar with. By visiting the SAGE UI Interaction
Client page, a user can see an overview of the SRSD and can
load any of the supported data types or applications. The user
can also easily and quickly share local documents, show their
screen, or add a pointer to the SRSD.

Since the Interactions Clients are running on personal
devices, there was a challenge in correlating interaction events
with desired actions on the SRSD. Additionally, web browsers
are not designed to handle simultaneous inputs from multiple
distinct users. To address this, we capture events from the
Interaction Client devices, such as a laptop or smartphone, and
forward them to the SAGE2 Server. The Server then
broadcasts these events to each Display Client. This enables
remote devices to be used for interaction and removes the
constraint of one pointer per machine.

Another challenge we addressed was expanding the types
of user interaction enabled by SAGE2. We wanted to support
application interaction and window management in four major
interaction zones for SRSDs: directly at the display using touch
gestures, standing near the display using motion tracking or
6DOF devices, seated near the screen using a gyro-mouse or
laptop pointer, or indirect control further away from the screen
using the SAGE UI [28]. To accomplish this, we utilize the
Omicron input abstraction utility library [29]. Omicron is
capable of receiving data from different types of input devices
including touch overlays, motion tracking systems, game
controllers, and speech recognition tools (Fig. 4). Omicron then
streams data from these heterogeneous devices in a uniform
manner that the SAGE2 Server can interpret.

3) Challenges for supporting multi-user applications
Interacting with ultra high-resolution displays from a

distance makes preceision pointing difficult. In standard
desktop environments, resizing a window is commonly done

by click-and-drag on a corner and moving a window by click-
and-drag on a title bar. In order to remove the preceision
necessary to accomplish these tasks, we have enabled two
interaction modes, window manipulation and application
interaction, that a user can toggle between. When in window
manipulation mode, events anywhere on an application will be
performed on the window (click-and-drag to move, scroll to
resize). When in application interaction mode, all events are
forwarded to the interactive application to handle.

Another challenge was to support loading custom web
applications dynamically. Typically, web applications are only
loaded once per browser tab and utilize the browser’s default
event handling system. In order to create multiple instances of
a web application across the SRSD, we have encapsulated all
web applications in a JavaScript class. Therefore, an
application can be dynamically instantiated as many times as
requested. We also forward SAGE2 events to these
applications, so that they can respond to multi-user inputs, such
as independent keyboards, pointing devices, and touches.

A final challenge with supporting applications in SAGE2,
was sharing them across sites. In order to share applications
with remote sites and engage in collaborative interaction, we
have designed all applications as objects accessible through a
URL. This allows a reference to the application to be retrieved
from any remote location, whether it is another SAGE2 site or
a remote single-user on his/her laptop.

D. Overcoming the Collaborative Roadblocks
Designing the Interaction Clients as applications accessed

through a web browser addressed the issues presented in the
lightning collaboration scenarios. New users are no longer
presented with a barrier when wanting to share and interact
with content on the SRSD. Creating custom event handlers for
managing simultaneous independent inputs addressed both the
parallel investigation workflow and single-driver, multiple-
navigators roadblocks. Multiple users can now simultaneously
interact with shared content allowing investigators to
manipulate content originally shared by a collaborator.

V. APPLICATION DEVELOPMENT
Many research and industrial collaborative projects take

advantage of web-based content. Online data portals and
visualization tools have increased tremendously in recent

Fig. 4. Mutli-user interaction with expanded input modalities. Panel A shows a radial menu system that allows multiple users to simultanesouly interact with a
media brower. Panel B depicts a user interacting at a SRSD using a multi-touch overlay to perform a pinch-zoom gesture. Panel C shows a user interacting
with SAGE2 using a video game controller that has been supplemented with motion tracking reflectors.

C A B

years, generating demand for direct interaction with web-based
content in a group setting. Web development has a large
community supporting many APIs, and browsers are becoming
as powerful as stand-alone applications at rendering high-
quality two-dimensional and three-dimensional content.
SAGE2 builds off of these developments and to our knowledge
is the first to provide support for both custom and off-the-shelf
application integration into a multi-user setting on SRSDs.

A. Open Development
The SAGE2 framework has been designed to enable rapid

application integration and development for a community
interested in supporting multi-user collaborative environments.
SAGE2 provides a rich platform for developing custom
applications. We provide a JavaScript API to create native
SAGE2 applications. Developers can also make standalone
applications SAGE2 compatible by adding a few lines of code
to their source. For off-the-shelf applications where users don’t
have access to the source code, SAGE2 can stream pixels and
forward events to a remote machine running the application.

The SAGE2 JavaScript API can be used for developing
applications from scratch or porting existing web content. The
API allows developers to create applications with scalable
resolution. SAGE2 uses the <canvas> element to access native
rendering routines, which gives access to two-dimensional and
three-dimensional contexts. External libraries, such as
kinetic.js, D3.js, or three.js, can be utilized for higher-level
graphics abstraction. The API also provides an event handler
that supports simultaneous multi-user interaction from a variety
of input devices. SAGE2 handles distributing and
synchronizing the rendering of an application, hiding the
cluster-based compatability from the developer.

SAGE2 also supports pixel streaming and event forwarding
for external applications. This provides the ability to utilize
SAGE2 in order to view and interact with standalone
applications at ultra high-resolution and handle inputs from
multiple simultaneous users. Inserting a few lines of code
allows a standalone application to communicate with the
SAGE2 server. The application then streams its frame buffer to
SAGE2 and receives events from the SAGE2 server. The
scalable nature of SAGE2 allows these standalone applications
to stream output of any size.

Off-the-shelf applications can also run in SAGE2. A
remote machine must run a lightweight SAGE2 messaging
client in addition to the application. The SAGE2 messaging
client scrapes pixels from the remote machine’s desktop and
translates SAGE2 events into real events for a mouse and
keyboard. Even though off-the-shelf applications are inherently
single user, multiple users can still interact with these
applications through SAGE2. All the events coming from
different users will be perceived as being generated from a
single user. Though SAGE2 allows applications to render at
any resolution, such applications are constrained by the
resolution of the display connected to the remote machine.
Custom or off-the-shelf applications can stream pixels to
remote SAGE2 sites through remote gigabit data streams,
which helps enable distance collaboration.

B. Prototype applications
We have developed several standard and custom prototype

applications for SAGE2. By default SAGE2 provides image
viewer, PDF viewer, and video player applications. We have
also developed a custom notepad application using the SAGE2
JavaScript API that allows multiple users to simultaneously
and independently position cursors and add text to a document.
This application demonstrates the usefulness of SAGE2, not
only for organizing content in collaborative sessions, but also
for collaborative application interaction. This prototype
application utilizes the multi-user event handling system of
SAGE2, which serves as a template for developing more
complex, collaborative applications. Additionally, we have
integrated the Google Maps API into a SAGE2 application.
This specifically addresses one of the desired features
requested in the user survey from section II.B. The Google
Maps application provides ultra high-resolution map imagery
and allows any users to change location and zoom level, or add
additional layers of information, such as weather and traffic.

We have also developed a web browser application that
allows users to launch a browser within the SAGE2 display
environment and interact with HTML rich content. This is an
external C++ application built using the Chromium Embedded
Framework (CEF3) [30], which is a library that can render
browser content into an off-screen buffer. This buffer is sent to
SAGE2 using the pixel-streaming paradigm, while the
application receives user interaction from SAGE2. This was
necessary to develop as an external standalone application
since many web pages prohibit themselves from being
embedded inside another web page.

We have also installed the SAGE2 messaging client on a
remote machine running ParaView in order to allow multiple
users to view and interact with this off-the-shelf scientific
visualization tool. SAGE2 events, mouse clicks and keyboard
presses, from various users are all mapped down to the remote
machine’s mouse and keyboard. This allows multiple users to
control an application that is otherwise single-user.

VI. USE CASES
Data intensive problems require the combined efforts of

many individuals from disparate fields. Since these problems
are complex, technologies that aspire to support collaborative
infrastructures must be flexible enough to aid in solving
individual problems of varying domains. SAGE2 is still under
development as a prototype, currently used regularly at a few
alpha phase installations, and therefore has not been evaluated
with a formal user study. In the rest of this section, we outline
three use cases based on real-world scenarios that highlight
how SAGE2 can uniquely handle the following collaboration
sessions: 1) imitate co-located collaboration with a physically
distributed team, 2) collaboration between multiple teams
working on different aspects of a related problem, and 3)
allowing a single remote user to join a collaborative session.

A. Imitate Co-located Collaboration
It is often the case that a team is distributed at two or more

physical locations, but wishes to work as though they were co-
located. In this scenario, everyone is working on the same
problem and looking at the same data. SAGE2 helps bridge the

gap of physical distance by mirroring shared content at all
sites, including live video and audio streams. To illustrate how
SAGE2 is used in such a situation, we will describe its use
during the judging of a research based photo competition
conducted at a university. The panel of judges is distributed
across two or three campuses and wishes to rank all
submissions during a single joint session.

A SAGE2 session is started at one site, and the SRSD is
mirrored at all other sites by simply visiting the same URL. All
images along with their accompanying research description are
uploaded to the SAGE2 Server and displayed on each SRSD.
Additionally, the multi-user notepad application is launched,
allowing any judge to jot down thoughts or comments at any
time. During the first phase of judging, each image and its
accompanying description are enlarged to full resolution and
viewed one at a time. After a brief discussion, the image is
placed in one of three groups – top contender, possible
contender, not a contender. Once all images have been
discussed, the second phase of judging begins. This stage,
depicted in Fig. 5, is more freeform with all judges working
simultaneously. Spatial orientation of the images is used to
compare and rank the images. A better image is moved up
higher on the display – if an image is only a few pixels higher
than another it is considered just barely of higher quality,
whereas if it is positioned many pixels higher it is considered
significantly superior. Any judge at any site can rearrange the
images, add comments to the notepad, or communicate with
the other judges. This process continues until a consensus is
reached and the winners are determined.

SAGE2 provides a number of unique features that enable
this type of collaboration. Since SAGE2 provides a windowing
environment on an ultra high-resolution SRSD, the judges are
able to view multiple high-resolution images simultaneously.
The multi-user paradigm allows multiple judges to reorder the
windows or add comments to the notepad simultaneously,
reducing completion time for the task. The video conference
allows judges at different locations to see and talk to each other
as if they were present in the same room. This is incredibly
important due to the fact that images are submitted from a
variety of domains, and each judge has a unique expertise.
Since the SRSD is mirrored at all locations, when a judge at
one location interacts with the content, all other sites
immediately reflect the modification. This gives collaborators
at all sites a shared context from which to communicate.

B. Remote Collaborators Working on a Distributed Problem
Another common scenario is when distributed teams work

with the same or similar data and want to share related data and
discoveries. In this case, each team may have a unique
configuration for their SRSD, and not all documents and
applications need to be present at each location. To illustrate
how SAGE2 is used in this situation, we will describe its use
for disaster management planning in the city of Chicago.

Disaster management planning requires multiple groups to
work together. In this example, we will illustrate the
collaboration between Chicago city officials and researchers at
Argonne National Lab. The city officials are responsible for
crisis management and direct the disaster management

planning. They are familiar with the city, its infrastructure, and
its population. The researchers utilize their supercomputing
facilities to simulate and visualize various disasters. Each team
uses a wide array of content to analyze their data including
interactive maps, PDFs, images, charts, and graphs.

Members of each team simultaneously use a multitude of
applications to answer relevant questions. Panel A in Fig. 6
shows city officials reviewing statistics, such as most densely
populated area vs. day of week and number of public trains
running vs. time of day. Panel B in Fig. 6 shows the
researchers running various disaster simulations, such as a
tornado or a train derailment, and creating advanced
visualizations. Both teams plot data on a map to see the spatial
distribution and overall impact of these disasters. Once the city
officials have determined a new scenario or one of the
researchers have made an interesting discovery, they share
their finding with the other team. Each team has independent
control over all documents and applications on their SRSD.
This allows important information to be shared between sites,
while keeping less relevant data private.

SAGE2 allows these teams to view and interact with
various types of data simultaneously, such as interactive maps,
PDFs, and images. More than one person at a given site can

Fig. 5. Judges	
 at	
 two	
 separate	
 campuses	
 ranking	
 research	
 images	
 for	

a	
 competition.	
 The	
 content	
 is	
 mirrored	
 at	
 both	
 locations	
 and	
 changes	

to	
 one	
 site	
 are	
 reflected	
 in	
 the	
 other	
 in	
 real-­‐time.

A

B

interact with any application simultaneously, which increases
productivity and removes the need to switch who is in control.
Each location can arrange the documents and applications
independently in order to create a layout that is most effective
for their team. Also, not all documents and applications are
shared between sites, which helps reduce visual clutter, and
ensures that only relevant content is available at each site.

C. Remote Single User Joining a Co-located Session
SAGE2 can also be leveraged when a single member of a

team is traveling or working from home. In this case, everyone
is working on the same problem and looking at the same data.
The major difference between this scenario and the first is that
the single remote member does not have access to a SRSD, but
rather only has his/her laptop or tablet. To illustrate how
SAGE2 works in this situation, we will describe a team
collectively writing a co-authored publication.

A team of five is outlining a paper and reviewing
previously published works. One of the members is attending a
three-day conference, so the team schedules its meetings
during lunch breaks. The other four members start a SAGE2
session and share numerous PDFs, a multi-user notepad, and
the lead author’s laptop screen. The remote member joins the
session from her laptop, which gives an overview of the
content and layout on the SRSD. She can get details of any
specific shared application on demand by viewing it in a
separate browser tab. Fig. 7 depicts the team reading PDFs and
taking notes on the related work, while the lead author
integrates relevant content into a draft of the paper on his
laptop. When the meeting concludes, the session can be saved,
so the team can resume later without having to re-upload and
reposition all relevant documents and applications.

SAGE2 allows a remote user to engage in a remote
collaboration session without the need for special hardware or
software. A browser allows the remote user to view and
interact with shared content via an overview of the whole
SRSD and detailed applications viewable one at a time. The
co-located team and the remote user both receive immediate
input from each other. SAGE2 allows both the co-located team
and the remote individual to take advantage of the technology
at their disposal, rather than forcing a group to fall back to the
lowest common denominator. SAGE2 also allows the team to
continue their work at a later time by saving the session.

VII. CONCLUSION
Collaboration has always been an essential dimension of

work in research, academia, and industry. In the next decade,
collaboration will be even more essential, as multidisciplinary
teams tackle complex big data problems. While SRSDs have
been shown to be powerful tools for collaborative work,
specialized software is required to effectively leverage these
environments. We have built a next generation SRSD
collaborative platform, SAGE2, that integrates cloud-based and
web browser technologies into an environment suited for data
intensive problem solving in authentic scenarios. SAGE2 taps
into the original SAGE user community and has the potential
to expand this community, because of its enhanced support for
development and integration of multi-user applications, and its
lower barrier to entry. We invite the community to use SAGE2
as a platform to develop multi-user applications for devices
ranging from a standard desktop to a cluster-driven tiled
display wall. With the ability to provide support for various
input devices, its seamless extension towards multi-user
scenarios, and its ability to leverage the web infrastructure, we
have illustrated SAGE2 as a powerful tool for group work

Fig. 6. This	
 figure	
 illustrates	
 Chicago	
 city	
 officials	
 and	
 researchers	
 at	
 Argonne	
 National	
 Lab	
 collaborating	
 by	
 sharing	
 relevant	
 information	
 while	

maintaining	
 separate	
 focuses.	
 Content	
 is	
 controlled	
 independently,	
 but	
 can	
 be	
 shared	
 across	
 remote	
 sites.

Fig. 7. Panel	
 A	
 shows	
 a	
 team	
 of	
 authors	
 collaboratively	
 writing	
 a	
 paper.	
 A	
 remote	
 single	
 user	
 is	
 able	
 to	
 participate	
 by	
 viewing	
 applications,	
 such	
 as	

PDF	
 viewers	
 and	
 a	
 shared	
 laptop	
 screen	
 in	
 separate	
 web	
 browser	
 tabs	
 (Panels	
 B	
 and	
 C).

A B C

A B

through a series of use cases. More information about SAGE2
can be found at its website, http://sage2.sagecommons.org.

VIII. DISCUSSION / FUTURE WORK
Research on SAGE2 is ongoing and currently stands as a

functioning prototype. We anticipate an open-source beta
release by November 2014. In addition to improving stability
of the platform, two of our major future goals are to research
linking content and further improving remote collaboration.
We plan to explore the possibilities of creating links between
applications in order to exchange data, such as the ability of a
mapping application to plot the locations of all photos that are
geotagged on the SRSD. We will also be exploring various
techniques to improve remote collaboration where the
technologies at each site are heterogeneous. We plan to
synchronize applications across multiple sites and provide a
window into a remote site’s SRSD to give a visual overview of
their content arrangement.

ACKNOWLEDGEMENTS
This publication is based on work supported in part by the

National Science Foundation (NSF), awards ACI-1339772,
OCI- 0943559 and CNS-0959053. Any opinions, findings and
conclusions or recommendations expressed in this publication
are those of the authors and do not necessarily reflect the views
of the funding agency. SAGE and SAGE2 are trademarks of
the University of Illinois Board of Trustees.

REFERENCES
[1] C. Johnson, R. Ross, S. Ahern, J. Ahrens, W. Bethel, K. L. Ma, M.

Papka, J.V. Rosendale, H. W. Shen, and J. Thomas. 2007. Visualization
and knowledge discovery: Report from the DOE/ASCR workshop on
visual analysis and data exploration at extreme scale. Salt Lake City.

[2] J. Cummings, T. Finholt, I. Foster, C. Kesselman, and K.A. Lawrence.
2008. Beyond being there: A blueprint for advancing the design,
development, and evaluation of virtual organizations.

[3] R. Ball, and C. North. 2005. Effects of tiled high-resolution display on
basic visualization and navigation tasks. In CHI '05 Extended Abstracts
on Human Factors in Computing Systems. ACM, New York, NY, USA,
1196-1199.

[4] M. Czerwinski, G. Smith, T. Regan, B. Meyers, G. Robertson, and G.
Starkweather. 2003. Toward characterizing the productivity benefits of
very large displays. In Proceedings of Interact, vol. 3, pp. 9-16.

[5] D. S. Tan, D. Gergle, P. Scupelli, and R. Pausch. 2003. With similar
visual angles, larger displays improve spatial performance. In
Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. ACM, New York, NY, USA, 217-224.

[6] L. Renambot, A. Rao, R. Singh, B. Jeong, N. Krishnaprasad, V.
Vishwanath, V. Chandrasekhar, N. Schwarz, A. Spale, and C. Zhang.
2004. Sage: the scalable adaptive graphics environment. In Proceedings
of WACE, vol. 9, pp. 2004–09.

[7] B. Jeong, R. Jagodic, L. Renambot, R. Singh, A. Johnson, and J. Leigh.
2005. Scalable Graphics Architecture for High-Resolution Displays. In
Proceedings of IEEE Information Visualization Workshop 2005.
Minneapolis, MN, October 2005.

[8] B. Jeong, L. Renambot, R. Jagodic, R. Singh, J. Aguilera, A. Johnson,
and J. Leigh. 2006. High-performance dynamic graphics streaming for
scalable adaptive graphics environment. In Proceedings of the 2006
ACM/IEEE conference on Supercomputing. ACM, New York, NY,
USA, Article 108.

[9] Google+ Hangout. June 20, 2014 from
http://www.google.com/+/learnmore/hangouts/.

[10] Skype. Retrieved June 20, 2014 from http://www.skype.com/en/what-is-
skype/.

[11] WebEx. Retrieved June 20, 2014 from http://www.webex.com/.
[12] K. Curran. 2002. A web-based collaboration teaching environment. In

IEEE Multimedia. 9(3), 72-76.
[13] M. Pappas, V. Karabatsou, D. Mavrikios, and G. Chryssolouris. 2006.

Development of a web-based collaboration platform for manufacturing
product and process design evaluation using virtual reality techniques. In
International Journal of Computer Integrated Manufacturing. 19(8), 805-
814.

[14] M. Kuechler, and A. M. Kunz. 2010. Collaboard: a remote collaboration
groupware device featuring an embodiment-enriched shared workspace.
In Proceedings of the 16th ACM international conference on Supporting
group work. ACM, New York, NY, USA, 211-214.

[15] A. Febrett, A. Nishimoto, T. Thigpen, J. Talandis, L. Long, J. D. Pirtle,
T. Peterka, A. Verlo, M. Brown, D. Plepys, D. Sandin, L. Renambot, A.
Johnson, and J. Leigh. 2013. CAVE2: a hybrid reality environment for
immersive simulation and information analysis. In Proceedings of The
Engineering Reality of Virtual Reality 2013.

[16] A. Febretti, A. Nishimoto, V. Mateevitsi, L. Renambot, A. Johnson, and
J. Leigh. 2014. Omegalib: A multi-view application framework for
hybrid reality display environments. In IEEE Virtual Reality, pp. 9–14.

[17] S. Eilemann, M. Makhinya, and R. Pajarola. 2009. Equalizer: A scalable
parallel rendering framework. In IEEE Transactions on Visualization
and Computer Graphics, vol. 15, no. 3, pp. 436–452.

[18] K. U. Doerr, and F. Kuester. 2011. CGLX: a scalable, high-performance
visualization framework for networked display environments. In IEEE
Transactions on Visualization and Computer Graphics. 17(3), 320-332.

[19] K. Ponto, K. Doerr, T. Wypych, J. Kooker, and F. Kuester. 2011.
CGLXTouch: A multi-user multi-touch approach for ultra-high-
resolution collaborative workspaces. In Future Generation Computer
Systems. 27(6), 649-656.

[20] S. Yokoyama and H. Ishikawa. 2011. Parallel distributed rendering of
html5 canvas elements,” in Proceedings of the 11th international
conference on Web engineering, pp. 331–345.

[21] S. Elrod, R. Bruce, R. Gold, D. Goldberg, F. Halasz, W. Janssen, D.
Lee, K. McCall, E. Pedersen, K. Pier, and others. 1992. Liveboard: a
large interactive display supporting group meetings, presentations, and
remote collaboration. In Proceedings of the SIGCHI conference on
Human factors in computing systems, pp. 599–607.

[22] J. T. Biehl, W. T. Baker, B. P. Bailey, D. S. Tan, K. M. Inkpen, and M.
Czerwinski. 2008. Impromptu: a new interaction framework for
supporting collaboration in multiple display environments and its field
evaluation for co-located software development. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pp. 939–
948.

[23] M. Rittenbruch. 2013. CubIT: large-scale multi-user presentation and
collaboration. In Proceedings of the 2013 ACM international conference
on Interactive tabletops and surfaces. ACM, New York, NY, USA, 441-
444.

[24] Oblong Industries, Inc. Introducing Mezzanine: The Future of
Conference Room Collaboration. White paper. 2013.
http://www.oblong.com/mezzanine/overview/.

[25] D. Lee, S. A. Munson, B. Congleton, M. W. Newman, M. S. Ackerman,
E. C. Hofer, and T. A. Finholt. 2009. Montage: a platform for physically
navigating multiple pages of web content. In CHI '09 Extended
Abstracts on Human Factors in Computing Systems. ACM, New York,
NY, USA, 4477-4482.

[26] G. P. Johnson, G. D. Abram, B. Westing, P. Navr'til, and K. Gaither.
2012. Displaycluster: An interactive visualization environment for tiled
displays. In IEEE International Conference on Cluster Computing, pp.
239-247.

[27] Node.js. Retreived June 20, 2014 from http://nodejs.org/.
[28] J. Leigh, A. Johnson, L. Renambot, T. Peterka, B. Jeong, D. Sandin, J.

Talandis, R. Jagodic, S. Nam, H. Hur, and Y. Sun. 2013. Scalable
resolution display walls. In Proceedings of the IEEE. 101(1), 115-129.

[29] Omicron. Retrieved February 13, 2014 from http://github.com/uic-
evl/omicron/.

[30] Chromium Embedded Framework. Retreived June 20, 2014 from
https://code.google.com/p/chromiumembedded/.

